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Abstract :

We present a comprehensive survey of experimental and theoretical work on large transverse momentum processes. Exclusive
data and single particle inclusive measurements are summarized and some discussion of multiparticle inclusive data is included. We
review many of the predictions of nonparton models including the geometrical, statistical, eikonal and bootstrap approaches. A
more detailed discussion is given of the structure of models based on the hard scattering of constituents. The predictions for
hadronic and electromagnetic processes based on quark counting rules and the constituent interchange model (CIM) are summar-
ized. We present numerous comparisons with experiment and indicate the framework for the comparison with new experimental
data. Recent theoretical progress in the problem of relating short distance structure of hadrons with the asymptotic behavior of
form factors and fixed angle amplitudes is also reviewed. We include a brief discussion of the possible influence of new hadronic
degrees of freedom on large-p1 phenomena. Finally, we attempt to anticipate the type of experiments which will prove decisive
in the understanding of this subject.

1. Introduction
1.1. Large transverse momentum reactions and the structure of hadrons

It has long been known that the average hadron—hadron collision produces particles with low
transverse momentum. A few years ago, early experiments at the CERN—ISR indicated that the
probability of producing a particle with large transverse momentum, though quite small, is actually
several orders of magnitude higher than might have been expected on the basis of a simple extra-
polation of the low transverse momentum data. While these experimental results were not as
dramatic as the famous Rutherford a-particle scattering experiments [205], they may have the
same sort of significance. It is apparent that it is not feasible to conceive of hadronic collision
processes as occurring between structureless matter distributions, but that there is an effective
nonuniformity characterized by a small distance scale or perhaps by pointlike constituents.

In the past decade, the observation of scale-invariant electron and muon scattering at large
momentum transfer has demonstrated that hadrons have an effective pointlike constituent struc-
ture. These experimental data have been well-explained in terms of the quark—parton model, in
which the carriers of the currents are structureless but yet carry a finite fraction of the hadron’s
momentum. Thus one expects that hadrons can scatter to large transverse momentum via hard,
large angle scattering processes involving their constituents. The possibility that the large trans-
verse momentum processes involving only hadrons are directly related to the deep inelastic lepton
induced reactions has attracted a great deal of attention. We will devote the major portion of this
review exploring and pursuing the consequences of this type of connection.

In contrast, there have been numerous attempts to explain the large transverse momentum
processes without invoking partons. These models lack some of the attractive features of quark—
parton models in that they do not make the kind of unification between hadron spectroscopy,
electroproduction and hadronic scattering possible in the quark model. They are important,
however, in order to see how far we can go without invoking quarks and in order to define what
constitutes a definitive test of the application of quark—parton ideas to hadronic scattering.

Even if granted the basic postulates of the quark—parton picture of hadronic structure, one
must still admit that the violent collision of hadrons is a more difficult way to probe that structure
than deep inelastic lepton—hadron since both the beam and target particles possess unknown com-
plexity. To use an analogy due to Feynman, studying hadron—hadron collisions is like smashing
two watches together and watching the gears fly out! Pursuing this analogy we see that the produc-
tion of large p hadrons in such a collision provides a unique way to studying the, possibly funda-
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mental, “‘gear—gear” interaction. The ultimate goal is to understand both lepton and hadron-
induced reactions within the same basic framework and to unravel the essential dynamical degrees
of freedom of the hadrons. The variety of information on violent hadronic interactions which is
experimentally accessible is large and there are many opportunities for testing and refining our
theoretical ideas. The extra complexity in the hadron—hadron interaction, if it can be handled,
offers the possibility of a richer lode of information. Conceivably, such information could help
illuminate the central mystery of quark—parton models: the mechanism of confinement which
prevents quarks from being observed singly.

In this review we will attempt to summarize what is known experimentally about large trans-
verse momentum reactions as well as to examine the current theoretical speculations. This sum-
mary will be as current as possible but the nature of the field is such that there may be substantial
new information and possible ‘‘surprises” from new experiments that we have not been able to
cover. The cutoff date on experimental information is roughly January 1, 1975 *,

.Our review is organized as follows. The remainder of the introduction will present some general
theoretical concepts and should serve to warn the careful reader of our personal prejudices. We
also outline here the main implications of the data for various theories, the connection between
small-p; and large-p; phenomena, and the interrelation between large p inclusive production and
exclusive large-angle scattering. In section 2 we discuss in further detail the main experiments and
try to extract the phenomenological features of the data. In section 3 we review model approaches
to large transverse momentum which do not involve partons, including eikonal, bootstrap, fireball
and thermodynamic models. Interestingly enough, we find that many features of the data can be
understood in these purely hadronic terms. In section 4 we return to a more careful treatment of
hard collision models. Particular emphasis is placed on the separation of short-distance and large-
distance phenomena, the dimensional counting ansatz and specific features of the constituent
interchange model. We also include a review of recent theoretical treatments of the elastic form
factor. In section 5 we conclude with a discussion of how experiments may be able to discriminate
between models. The appendices include a derivation of the basic equation of the hard scattering
model and a comparison of different techniques for calculations. We also discuss areas ripe for
more theoretical work. Large transverse momentum physics is just at its infancy and this review
can only be a small step toward illuminating a crucial new area of hadronic physics.

1.2. Implications of power-law scaling for inclusive cross sections

The fact that the observed inclusive spectrum of hadrons produced at large transverse momen-
tum at the CERN—ISR was much larger than an extrapolation of the form exp (—6py) based on
the Hagedorn thermodynamic model suggests that the data can be explained in a hard scattering
model. In these models, because of the assumed structureless nature of the constituents the general
form of the invariant cross section for A + B - C + anything is predicted to be

3
00 (5,1, M) 5

d3plE pi>m* (p2)

fls, Mm?s) , (1.2.1)

where p2 = tu/s and M is the missing mass. We call this factorization of the cross section into a

* Another review, with emphasis on the experimental aspects of large transverse momentum phenomena, is now in preparation
(P. Darriulat). It should review this fast moving field as of the end of 1975. (Editorial note.)
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power times a function of the dimensionless “scaling’ parameters power law scaling. For two-
body exclusive processes A + B > C + D at fixed 6, the analogous scaling form is

do 1

—_ B —

T (s,0) YO e
This latter scaling law also implies the power law falloff for the electromagnetic form factors of
hadrons. In general, the value of N in (1.2.1) and (1.2.2) depends on the particles involved.

There is substantial experimental evidence for the approximate validity of (1.2.1) and (1.2.2)
which we will examine in more detail later. The one thing we want to note here is that a simple

parametrization of the inclusive cross section pp = 7° anything (see fig. 1.1), can be written
(Busser et al., [66])

dBo—--—— ——126mbfGeV?
moX) ——
d3p/E [p2+1 GeV?]*
where x1 = py/py max = 2p,/\/s. Charged pion data at FNAL (for 0.3 < x; < 0.7) seems to fall
even more rapidly with p., roughly as p7'? (Cronin et al. [93]).
It is interesting to compare this empirical formula with the observation of Bjorken scaling for
deep inelastic lepton production. We can write the invariant cross section as

f(t/s). (1.2.2)

exp (—13x,) 0.1< x; < 0.4 (1.2.3)
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Fig. 1.1. The inclusive cross section pp — #© + X versus transverse momentum. The data are from the CCR collaboration [66].
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3 2
950 (ep-eX)=3TL r(ss, M2Ys), s> mP MPs, tfs fixed (1.2.4)
d3p/E 2
which is equivalent to
3 ~
9 (epseX)a L 70, Ms) . (1.2.5)
d*p/E Pt

This formula displays the scale-invariance of the lepton inclusive cross section. There is apparently
no relevant mass involved in this reaction. To the extent that scale invariance is valid experimen-
tally, we can deduce (in the one-photon approximation) that the usual structure functions
W,(p-q,q? and vW,(p-q, q*) are functions only of the variable x = — /(M 2~ 1).

Since the data now imply that the electromagnetic interactions within hadrons are essentially
scale-invariant, it is evident that the exchange of one photon will lead to a scale invariant cross
section for hadron—hadron collisions. This fact has been emphasized by Berman, Bjorken and
Kogut [28]. The cross section for one-photon exchange for hadrons is, however, everywhere more
than four orders of magnitude smaller than the current data (see fig. 1.2). Using (1.2.3) to extra-
polate, we can surmise that one-photon exchange may be important at+/s = 2000 GeV and
pr = 45 GeV/c which is near the upper limits of the range of possible future Isabelle experiments.
At very high p, we might also have a contribution from the weak interactions of hadrons. The
kinematic range where all three types of interactions are potentially important is likely to be full
of surprises.

|O-27

|O—28
Io_29

|O—30

1073
CCR V5252.7 GeV
|0-32
5 10733 |
|O—34 r
1035

1073€

10737 I {

Fig. 1.2. The extrapolation of the Hagedorn exp (- 6py) and the contribution of 1y exchange from BBK are compared with CCR
data.
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In view of the form predicted for one-photon exchange, a natural ansatz for violent hadron--
hadron collisions proposed by Berman, Bjorken and Kogut [28] and in a different form by Berman
and Jacob [29] is that there is a contribution due to the carriers of the electromagnetic current
interacting through vector gluon exchange. It is conventional to assume that the coupling constant
which characterizes this interaction is dimensionless, as in QED, in order to have a renormalizable
theory. This, in turn, leads to a scale-invariant cross section £d3o/d3p « p3*f(t/s, M?[s) in con-
trast to the parametrization (1.2.3). Within the context of this model, however, the observed p
behavior might be interpreted as implying that the matrix element is not dimensionless.

One of the major problems in understanding the relevance of quark--parton ideas to violent
hadron—hadron collisions is then the apparent absence of this p;* contribution. One simple pos-
sibility is just to assume a super-renormalizable theory such as an underlying g¢® theory in order
that the coupling constant possesses units of mass. As discussed in ref. {10] scalar exchange will
give the observed p® behavior. Another possibility is that, due to kinematic requirements and the
absence of observable quarks, a particle with form factor F(t) ~ (1—¢t/m*~!is always involved in
the interaction. This contribution is important in the Constituent Interchange Model (CIM) of
Blankenbecler, Brodsky and Gunion [41,42], the related model of Landshoff and Polkinghorne
[174], and, as discussed by Ellis [107,108] contributes to a “‘semi-inclusive” mode of the parton
gluon model.

It is not clear, however, that merely removing the possible p7* term solves all the problems.
Data from the Chicago—Princeton group on pp - #* X and Fermilab indicates the situation is more
complicated in that a single term of the form (1.2.1) apparently cannot fit all the data since the
effective power of N in (1.2.1) is different in different kinematic regions. The most natural ways
of reconciling all the data is to assume that a sum of power law scaling terms is needed or that NV
depends on x . Correlation experiments can tell these options apart, as we shall see.

A sum of terms is actually predicted in the constituent interchange model (CIM) of Blanken-
becler, Brodsky and Gunion and in the massive quark model of Preparata [ 199, 200]. One finds
that different terms with different powers of p dominate in different parts of the CP experiment.
A quite acceptable fit to the FNAL and ISR data can be achieved with a two-term parametrization
although, in principle, there is no reason to exclude more terms. The soft gluon model of Fried,
Gaisser and Kirby [129,130] predicts that N increases with x (Fried [124]).

In the former vein, Bander, Barnett and Silverman [22] and Ellis [107} suggest that three types
of mechanisms can be important — each dominant within its own regime in x,. At small x quark—
quark scattering is important, at intermediate x; quark—hadron processes become more important,
and as one moves toward the exclusive boundary only hadron—hadron contributions may be im-
portant. Experimentally, this is still very much a possibility as long as the p;“ contribution is
small. Within the context of asymptotically free gauge theories there might be some reasons for
this type of suppression (Cahalan, Geer, Kogut and Susskind [68]).

As noted by Ellis [107] the production of “‘jets”’, many hadrons with a total transverse momen-
tum of py, may show a p;“ scaling law even though the production of a single hadron, at ISR
energies, falls off more rapidly. Similarly, in a model due to Preparata [199, 200], a scale invariant
form will not arise until gq — two “fireballs” becomes possible. We will discuss the predictions of
all these distinct models for inclusive spectra in more detail and see to what extent current or
projected experimental data will allow us to distinguish models. In any event the apparent absence
of a scale-invariant quark--quark contribution in current data is of enormous theoretical importance
from a quark—parton viewpoint and is one of the most striking indications that there are important
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aspects of hadron structure not seen in deep inelastic lepton scattering but which can be studied
in large-p; hadronic collisions.

1.3. Further implications of the large-transverse-momentum data — Feynman scaling

The different kinematic regions of the inclusive process AB - C + anything are defined in the
Peyrou plot shown in fig. 1.3. The invariant cross section is described in terms of the center-of-
mass variables, py, 0.y and €,

pi =tuls

(1.3.1)
~ufs = 3(1+cos Oy )

€= M¥s=1~-xg=1—-(x:+x}"?,

where M is the missing mass, x1 = p¢/pEF* and x,; = p, /p&F*. The radial distance from the
perimeter of the Peyrou plot is measured by €.

The small-p; region where x = 0 contains the bulk of the data. By convention it is further
subdivided at high energy into the “central” region, x| = 0, the “triple-Regge” region, x| = 1, and
the “fragmentation” region consisting of all intermediate values of x, . The large-p; or “‘deep”
region is the one in which we are primarily interested here. It extends from p; > 2—3 GeV/c right
out to € = 0, the exclusive limit. Since the deep region shares boundaries with each of the others,
important constraints on hadronic theories can be obtained by requiring a smooth connection
between this and the other kinematic regions.

One important feature of the inclusive cross section data is the approximate validity of Feyn-
man scaling. For small transverse momentum this means we can write

0 (s, prxy) ~ Fproxy) (13.2)
dap/E PET L T**L/
This approximate asymptotic energy independence is expected theoretically to be valid to within
logarithmic factors. These factors are important in the discussion of the asymptotic behavior of
total cross sections but they will be neglected here.
As one continues out into the deep region, Feynman scaling is expected to generalize. One

p €~ 0 (exclusive limit)
-

region

centroljregion /" 'T.R

\Triple Regge Region

Fig. 1.3. A Peyrou plot for the process AB — C + any thing showing the different kinematic regions.
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possible simple generalization is to write
d3o

d3p/E

At fixed pp, xp = 2pT/\/E goes to zero as s »> o and we expect some energy dependence of the

cross section associated with this fact. This does not mean that Feynman scaling fails at large p,

it merely means that correction terms depend on p so that scaling is approached more slowly at

large p1. One can argue that the approach to scaling is largely kinematic in that the energy behavior

of pp = p and the energy behavior of pp - 7 are very similar if they are compared at the same

value of “effective mass”, /m? + p%. This point is emphasized in fig. 1.4 taken from the review of

Walker [225].

If we view hadrons as composite or complex systems, it is interesting to ask what the effective
energy of the fundamental interactions in a collision might be. For ordinary production processes
most of the energy is radiated as hadronic “bremsstrahlung” down the beam direction. High energy
alone is not sufficient to study high-energy interactions since, for example, in a multiperipheral
chain we can go to high total energy without any subenergies becoming large. When we observe a
high-p, particle, however, we are guaranteed that there is a violent subprocess which occurs at a
minimum effective energy squared of

Setr 2 40 (13.5)

(s, pr, xg) ~ f(p1, XR) - (1.3.3)

The structure of an interaction with a hard component is illustrated schematically in fig. 1.5.
In much of the discussion of this review we are investigating the possibility that this hard compo-
nent may represent a simple or even a fundamental interaction. If we can find a prescription for
stripping away the effects of the outer bremsstrahlung, then we can see whether we can fairly
compare this core subprocess with some annihilation cross section, such as, for example, 0+ - >
hadrons at s_+.- 2 4p2. The division of the process illustrated in the diagram of fig. 1.5 is quite
universal; virtually all the models which have been proposed turn out to have this structure in
common. If we assume the absence of important interference effects, the inclusive cross section
corresponding to fig. 1.5 can be written in a simple form involving probabilities. We define the

distribution

Gop(¥) =dNyg/dx;  0<x<1 (1.3.6)
_ LI S S I A S H 8 S SR B B |
2 | ® Antiproton Data _‘
S F at x=0 P;=0.65 Gev/c -
=~ F
§ L
z
s
— |
e b
- -
w -
S
P /
@ [/ frPp=8Gevat ISR
o—LL 111 1 1117 | 111
10 100 1000
S/ 5m

Fig. 1.4. Figure taken from Walker [225] comparing the approach to scaling of large-py pion data with antiproton data.
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for hadron B to contain an offshell fragment b with the longitudinal fraction x = p®/p® of the
initial momentum. There is an implied integration over the transverse momentum which is assumed
to be rapidly convergent. The conservation of momentum implies the constraint

1
] =
Zb? Ofxdeb/B(x) (1.3.7)

Notice that there is a term in Gy p(x) which corresponds to the “elastic” propagation of B without
bremsstrahlung

Ggp(¥) = Z8(1—x) . (1.3.8)

The quark—parton model for deep inelastic scattering gives the familiar relation
Fyp(x) =vWy(x) = 20 N2x G () , (1.3.9)

where an/B is now the infinite momentum frame probability function for a quark—parton of
charge A, within hadron B. Within the same spirit, the inclusive hadron—hadron reactions can,
at large-p;, be written in the form

(AB->CX) = E fdx fdxb aA(x)Gb/B(xb) / (ab » CX), (1.3.10)
0 d°p

3
d*p/E 24 0

where d3¢'/(d3p/E) (ab > CX) is hadron irreducible since the initial bremsstrahlung is contained
in the G’s. A derivation of (1.3.10) is given in Appendix A. The “violent” subprocess, ab - CX
occurs at reduced s, = x, X, s 2 4p3. If the integration over transverse momentum (which is im-
plied in eq. (1.3.10)) is not performed, for example, we can study azimuthal correlations in two-
particle inclusives. With a specific choice of elementary scattering, eq. (1.3.10) and fig. 1.5 were
originally given by Berman, Bjorken and Kogut [28]. It has been rederived and generalized in
various forms using infinite momentum frame techniques (Blankenbecler et al. {41,42]), Sudakov
variables (Landshoff and Polkinghorne [174,175,176]) and an analysis of the multiperipheral
model (Amati, Caneschi and Testa [10]; Levin and Ryskin [ 180]). The interrelations between
these approaches are discussed in Appendix B. Possible off-shell effects in the hard subprocess
d3c'/(d*p/E) (ab - CX) are not explicitly included in eq. (1.3.10). The fact that Gy 5 (x) becomes
a function independent of |pg| for [pgl— o, can be derived in super-renormalizable elementary
field theories and bound state calculations.

Other examples of reactions which have the same general form as eq. (1.3.10) include the
Drell—-Yan formula [102] for the process hh > u* u~ X via qq annihilation and the two-photon
process ee - ee¢ + hadrons.

It is important to note the connection between the behavior of G(x) near x = 0 and the Regge
behavior of total cross sections. If o5, ~ s*~! one readily finds (modulo logarithmic factors)
(Feynman [119]; Landshoff, Polkinghorne and Short [178]; Abarbanel et al. [1])

Ga/A(x)~ Cx™2, (1.3.11)

Inserting this into (1.3.10) we see that Pomeron exchange, a =1, gives Feynman scaling for the
inclusive cross section, eq. (1.3.4).
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1.4. Relations among cross sections in hard scattering models

It is interesting to note that many of the properties of cross sections in hard-scattering models
can be determined directly from the underlying basic assumption. Consider any model in which
we can write in the limit s, 7, u > (masses)? the exclusive cross section as

d

% (AB - CD) = (Fg (1)) K5, (s, £, u) (1.4.1)
and the inclusive cross section in the triple-Regge region as

Ed%o s

e (AB = CX)|1r. = Py Fy () Kgp(xs, t,xu) , (1 .4.2)

where x = — t/(s +u) = — t/ M? — ¢t is the Bjorken scaling variable. The hadronic form factor
F BbD(t) reflects the probability of the transition B - D with D remaining intact and F /B (x) is the
generalized structure function describing the breakup of the target B due to the projectile b. These
equations are the analogs of the usual electron scattering formulae and include the assumption
that the large momentum transfer is achieved in a single factorizable impulse. A sum over the
internal index b of such separable terms can be considered as well but we will not write this sum
explicitly.

The expressions (1.4.1) and (1.4.2) are connected in the limit of small missing mass by a relation
of the Drell-Yan—West type [101,226]. The x - 1 limit of the inclusive cross section can be
written

lim 2 = L (1) F, s 01K, 100 (1.4.3)
x>1drdm? m?

If this is to join smoothly onto exclusive scattering for a2 = mf), then for (1—x) = mf)/(m% -t
we must have

(l—x)Fb/B(x) @ (F};D(t))2 . (14.4)
Hence,
FB"D(t)~ (-~ " <=>Fb/B(x)~ (1—x)-1, (1.4.5)

This is a simple extension of the Drell-Yan—West relation but one has not assumed that the
hadronic form factors have the same ¢-behavior of the electromagnetic form factor.

From (1.4.1), we see that in general the function X falls off less rapidly at fixed angle than the
exclusive cross section itself. Furthermore, if

d

57 (AB>CD)| ., ~ B2(O)sO2, (1.4.6)
then

Ko (5, 1, 4)) gyeq , ~ B2(1) s720072 (1.4.7)
with

B = FY, () B(t) . (1.4.8)
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Therefore, in the limit s > M?> |¢| (the triple-Regge region with x = 0) the inclusive cross sec-
tion can be written

Ed3o

d3p~
If this term is to contribute to Feynman scaling we must require Fy, /B(O) # 0. A more general
parametrization of Fy 5(x) nearx = 0

M t)l—2a(t')

(AB > CX) ~ (—1**®-2B2() F, . (0) ( (1.4.9)

Fb/B(x)~fb/Bxa (1.4.10)
results in the behavior
3 _ 2 1—a—2a(1)
’Z‘j Z(AB > CX) ~ (17202 520, (s (7o) - (1.4.1D)
D

The usual triple-Regge formula is independent of the x - 1 behavior of Fy ,B(x), however, if we
want to guarantee that it connects smoothly onto the exclusive limit it is important that we con-
tinue away from x = O with the appropriate form of Fy jp(x) obeying (1.4.4). This simple correc-
tion to the triple-Regge formula becomes important for decreasing missing mass.

If we want to generalize the expression (1.4.2) to describe the inclusive cross section in the
central region we must consider the fragmentation of the projectile A. If we write the probability
of finding fragment a of particle A with longitudinal momentum fraction x, as G, , (x,) =
X, lFa /a(x,) it is suggestive to write the cross section in the explicitly symmetric form

Ed3c
d3p

X Fya(x,) Fyp(xy,) Kgp(x,xps, X1, xp ) (1.4.12)

(AB-CX) = fdxa dxy, 8(x,xps +x,t + X u — m2:— ml— m?— m?)

where a sum over a and b is again understood. Comparing this form with eq. (1.3.10) we see we
have isolated a restricted subset of possible internal processes in the most general hard scattering
model where the internal sub-process is a 2—2 scattering leading to particle c.

By a simple change of variable, eq. (1.4.12) can be rewritten as an angular integral of the form

Edo (7P 4z (_2_xi)F (3{’_)1( (s=4p% z) (1.4.13)
d3p —(1—2x1)(1“‘22) AVEF *B T2 °® 1-22

where K can be identified with (2/) do/d¢ (ab - cd). In the limit of large p2 at fixed x, and x,,
the dependence on p2 is given in terms of the fixed angle behavior of the basic process described
by K£,. For example, for the process pp ~ X, an estimate of the contribution from the pion
intermediate state can be made by using the empirical result that mp - wp varies as s—8 at fixed
angle F_(t) ~ (—¢)"%, and hence K ~ s~*. This contribution to the inclusive cross section therefore
varies as (p2)~*. It is possible to make a much better estimate by a more detailed estimate of

K(s, t,u) but this will be postponed until specific models are discussed. We see that many different
models will yield formulas of the above structure; they must be judged, therefore, on their
detailed predictions for Fg,(¢), Fy, p(x), and K (s, b, u), on their range of applicability, and their
simplicity. A further generalization of (1.4.13) allows for final state fragmentation of ¢ into C.
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Fig. 1.5. The structure of an inclusive process in a hard-collision model where there is a underlying 2—2 subprocess.
1.5. What are the important internal mechanisms?

Given that the underlying structure of current models is roughly determined by the form of the
diagram shown in fig. 1.5, the differences between the various approaches consist of assumptions
concerning the question of what the important internal mechanisms, ab - CX in eq. (1.3.10),
can be. The possibilities include the following,

1.5.1. Quark—quark scattering

This is the mechanism originally discussed by Berman and Jacob [29] and made explicit in the
pioneering paper of BBK. The large-angle quark—quark scattering is followed by the scale-invariant
fragmentation of one of the quarks into the hadron C. If the fundamental quark—quark interaction
is scale-invariant this leads to £ do/d3p scaling as pr” as discussed earlier. The implications of this
model for particle ratios and for two-particle production have been explored by Ellis and Kislinger
[110] and by Bjorken {32, 33, 34]. More complicated phenomenological forms for the quark—
quark cross section, constrained to agree with fixed-angle exclusive hadronic processes, are used in
the calculations of Horn and Moshe [148].

Quark—quark scattering is in many senses, the most attractive hard collision model because of
its simple connection with ideas found useful in deep inelastic lepton production and the amount
of work done on the many alternatives is due largely to the apparent absence of the p1* behavior.
The specific predictions for the phase-space structure of events and for particle ratios are impor-
tant predictions which merit testing in spite of this failure.

1.5.2. Quark—hadron scattering

These are the dominant contributions of the constituent interchange model of BBG. The basic
hypothesis is that the quark—quark scattering contributions are suppressed leaving other types of
internal subprocesses involving quarks and hadrons (perhaps because the dominant interaction is
between quarks and their containers). One important example of such a contribution is qM » gM
(quark—meson scattering). Here we can either detect the hard-scattering meson directly or the
quark or meson can fragment into a hadron. Since the fragmentation functions are assumed scale
invariant, the power of p in the power law scaling, eq. (1.2.1), directly reflects the fixed angle
energy dependence of the subprocess. A simple ansatz for the scaling laws of exclusive processes
is given by the dimensional counting rules of Brodsky and Farrar [62] and Matveev, Muradyan
and Tavkhelidze [183]. We will discuss in considerable detail in section 4.3 how these rules are
derived and their implications for several processes. The nontrivial extensipn to the general case
and to inclusive scattering was given by Blankenbecler and Brodsky [40] and will also be covered
in considerable detail.
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The quark—hadron mechanism has also been discussed in detail by Landshoff and Polkinghorne
[174—177] where there is special emphasis on the fusion mechanism qq ~ MM. A related approach
can also be found in the work of Kinoshita [160] and collaborators.

1.5.3. Hadron—hadron scattering

In the multiperipheral model of Amati, Caneschi and Testa [10] and Levin and Ryskin [180],
the diagram of fig. 1.5 is still relevant if we think of the central collision as the two-body process
MM - MM where the M is the elementary scalar in a g¢* field theory. This model has been
thoroughly discussed by Levin and Ryskin [180]. It leads asymptotically to a strict p3® scaling
law for the inclusive cross section but there are serious difficulties in making connections with
deep inelastic reactions and large angle exclusive processes. In its simplest form the model predicts
limited multiplicities in the recoil system opposite a high-p hadron.

A more general approach has been discussed by Teper [221] who merely assumes that the
violent subprocess is a purely hadronic large angle scattering process. Quarks or partons are thus
never explicitly mentioned. If we adopt either the constituent counting rules or empirical fits for
various exclusive large-angle processes this can provide interesting lower bounds on the behavior
of the inclusive cross section. Experimentally, exclusive meson—baryon scattering is roughly con-
sistent with the scaling law

1
49 (MB > MB) ~ - f(Bcy) (1.5.1)
t \ s8
Thus, using eq. (1.3.10), we see that we must have a contribution proportional to
Ed? 1
22— fOcy, € (1.5.2)
& " ple

both for pp -~ BX and pp — 7X. These contributions are also present in the CIM but they are
usually assumed to be dominated by terms involving quarks at sufficiently large values of p, (at
fixed x). Similarly, the assumed behavior

do 1
ar (MM - MM) s—6f(0CM) (1.5.3)
given by the dimensional counting rules can lead to a contribution
1
99 (pp -+ 1X) > — 6 ©) (1.5.4)
d’p pr

It is a virtue of the assumption that the violent subprocess involves hadrons that it allows us
to use the structure of eq. (1.3.10) directly with experimental data on large-angle exclusive scatter-
ing in order to calculate inclusive cross sections. To the extent that we can neglect off-mass-shell
effects and coherence, this should provide important normalization checks. The approach should
also predict simply particle ratios for small x; where the fragmentation functions are proportio-
nal to total cross sections. Since it is not clear whether a point-like power-law falloff or an expo-
nential falloff associated with a mass scale is required for large-angle exclusive cross sections, the
advantage of dealing directly with data is obvious.

If we discuss the violent subprocesses in fig. 1.5 in purely hadronic terms the notion of a
“fireball” or high-mass excited hadronic state becomes important. For example, in the early model
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of Berman and Jacob [29] the internal heavy vector gluon exchange leads to the excitation of
baryonic fireballs. A version of this model was discussed by Berger and Branson [27]. In its direct
form, the model requires that a baryon be found with large transverse momentum on each side of
the collision axis along the direction of the scattered fireballs. There may also be problems with
Feynman scaling or crossing symmetry in the particular versions of the model discussed so far.

Another approach to diagram 1.5 is to assume the core subprocess consists of the production of
a single heavy fireball. In order to be different from the fireballs in the statistical bootstrap ap-
proach of Hagedorn [137] and Frautschi [122], this new heavy fireball must have some unusual
characteristics associated with it. If it possessed the usual cascade decay mode found in bootstrap
models, then the invariant cross section would be approximately given by a Boltzmann factor
exp (—py/kT,) although Bouquet, Letessier and Tounsi [ 54] have shown that modifications due
to a large recoil momentum building up after several decays can broaden the p, distribution. With
one or more new mass scales in addition to the usual k7, = m_ of the statistical bootstrap theory
we can obviously reproduce single particle distributions but there may be some problems in
getting reasonable two-particle distributions and multiplicities from a cascade decay mode. Within
the context of one fireball model, it is difficult to treat quantum number constraints correctly so
that, for example, a nontrivial K*/K™ particle ratio can be obtained.

Another possibility is that this new type of heavy fireball possesses a non-negligible fission decay
mode, F*(M) > F*(M/2) F*(M/2), in order to give the final state a distribution in phase space more
like the jet structure of the parton model. Obviously, to a certain accuracy, we can then reproduce
many parton-model results. '

1.6. The structure of high-py events

One of the potentially most interesting pieces of information that can be obtained concerning
large transverse momentum phenomena is the structure of events in phase space. When a high-p;
particle is produced we would like to know how many other particles are produced and what
regions of phase-space they populate. A spectacular possibility is that completely new and un-
expected types of matter, such as colored or charmed hadrons, weak bosons, or heavy leptons,
may be preferentially produced in association with large transverse momentum particles. In any
case, the measurement of correlations and associated multiplicities can provide severe restraints on
models for the underlying production mechanism.

An essential characteristic of hard-collision models typified by fig. 1.6 is the development of
some sort of jet structure. It is easy to see how this arises within the context of these models. The
fragmentation of the initial hadrons and possible fragmentation of the scattered constituents is
assumed to be a gentle process which preserves the direction of all hadronic momenta within fluc-
tuations of typical size (p1) ~ 0.3 — 0.4 GeV/c. In the case that one of the scattered particles is a
quark parton, this entails a belief that as in models for deep inelastic scattering the final state inter-
actions which neutralize quark quantum numbers are of this same gentie nature. The coplanarity
of the internal hard-scattering process is therefore approximately maintained in the regions of
phase space in which final state hadrons are found. Event-by-event there will be fragmentation
products along both beam directions and along the direction of the scattered large-p; constituents.
This structure is shown in fig. 1.6. The fact that the two large-p; jets emerge approximately
coplanar but not collinear is due to the center-of-mass motion of a and b.

The observation of jet structure would be a success for hard-scattering models while the measure-
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P

Fig. 1.6. Figure taken from Savit {208] demonstrates the regions of phase space populated by hadrons in hard-collision models.
The underlying 2—2 subprocess leads to jet structure.

ment of jet—jet cross sections would offer the potential of looking back “‘inside’ an event and
deducing the fundamental quark—quark or quark—hadron cross section. However, there is some
evidence from recent measurements of azimuthal correlations associated with large-p; by the CCR
group that the deviations from coplanarity in large-p; events are significantly greater than what

is expected on the basis of the simple arguments (Bjorken {35}). The spread in hadron momenta
around a jet axis is more like 1.2 GeV/c than 0.35 GeV/c. It may be possible that hard-scattering
models, since they prefer p; distributions that fail rather slowly (as powers), will be able to
accommodate this fact but the situation is not as clear as it might have been (Gunion [135,136]).

An important point to remember is that if one of the scattered constituents is a quark, the
multiplicity and distribution of hadrons in the jet associated with that quark should be identical
to that of the system which balances the transverse momentum of a deeply-inelastic-scattered
lepton. This connection, involving particle ratios, etc., can be tested experimentally in order to
quantify our presumption that quarks represent an important dynamical degree of freedom in
large-p; hadronic processes.

If the basic hard process is quark—quark scattering, the usual assumption is that in a given event
all the available phase space regions shaded in fig. 1.6 are approximately uniformly populated.
However, if the quarks scatter through a single elementary exchange then the middle regions will
usually be empty of hadrons: Further details on multiplicities and the phase space-geography of
the parton model are discussed by Bjorken [35], Savit [208], and by Ellis and Kislinger [110].

Let us briefly compare several models. In the hadronic multiperipheral model, the active
process is just meson—meson scattering and the average high-p jets consist of only a limited num-
ber of particles. The fusion process qq ~ MM is assumed to dominate in the covariant parton model
of Landshoff and Polkinghorne [177]. In the simplest version of this model we would again expect
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a typical jet to contain a fixed number of particles. In the CIM another important process is
gM - gM which leads to an asymmetric situation where the average multiplicity on the quark side
grows with increasing p; while the multiplicity on the other side stays fixed. Since there are po-
tentially many different processes important in the CIM and each can have different characteris-
tics, the average phase space population is probably more like the simple parton model.

An important prediction in the fireball model of Berman and Jacob [29] and Berger and
Branson [27] is that one expects baryon number one in each jet.

2. Experimental summary

The production of particles with large transverse momentum in hadronic collisions is a subject
of intrinsic experimental interest. Even if it were clear that the results could be fit by mundane
extensions of ideas valid at small transverse momentums, the experiments would be valuable in
order to explore and define the short-distance boundary of the strong interactions. Of course, the
experiments done so far have not been mundane but have produced some big surprises. This make
physics interesting and it is the interest generated by those surprises which triggered the large
amount of work which now justifies this review.

In this section we attempt to summarize the available experimental data with a minimum of
theoretical input. Theoretical prejudice will not be absent since it will influence what subjects we
include and since it has a large effect on how we or the original authors of the papers reviewed here
choose to plot data. We hope that this summary of those data which bear directly or indirectly on
the nature of hadronic interactions at short distance may prove valuable a source material to those
with new untried-theoretical ideas or that it can provide an entry into the original literature for
those interested in more details of the experimental situation.

The data we review here includes two-body exclusive scattering through large angles, single-
particle inclusive spectra, and two-or-more particle inclusive correlations. We conclude with a
partial list of experiments which have been proposed and which may produce results in the near
future.

Previous reviews or experimental summary tatks which can be consulted for more data include
Lundby [182], Walker {225], Ellis and Thun [111}, Brodsky [58, 59, 60], Landshoff [169,170],
Cronin [92], Darrjulat et al. [97] and Jacob [154].

2.1. Exclusive scattering at large angles

Data on exclusive 2—2 scattering processes have accumulated steadily over the years. In the
forward and backward directions differential cross sections can be described by Regge parametri-
zations of the form

g_(; (AB_> CD)ls_,w ~ B(W) S2Ct(W)—2 , (2.1.1)

where w = ¢ or u. The size and energy dependence of these peripheral peaks is correlated dramati-

cally with the quantum numbers exchanged in the ¢ or the u channel. Fig. 2.1.1, taken from Chiu

[78], indicates one aspect of this correlation which supports (2.1.1). The bulk of the existing data
lies within the peripheral peaks and it is therefore not surprising that most of the theoretical
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Fig. 2.1.1. Taken from Chiu [78]. The cross section of peripheral peaks at pp og = 5 GeV/c is correlated with the exchanged

quantum numbers. The systematics of this correlation is support for the basic features of Regge theory.

attention has been directed towards this Regge region.

We are primarily interested here in the scattering of hadrons through large angles. Away from
the peripheral peaks, the one thing common to all reactions is that the differential cross sections
fall rapidly with energy, requiring experiments with high beam intensity and/or long running time.
The kinematic range in which measurements have been made reflects this counting-rate restriction
but accentuated theoretical interest in the topic may help justify the considerable experimental
effort and machine time necessary to extend the coverage of this kinematic region.



D, Sivers et al., Large transverse momentum processes 19

T I T I T I T T
10! Elastic Scattering 5 GeV/c —
100
— |O—|
(\JG 10,000 T T T T T T
> 5 GevA
8 > ev/c _
I e T p—1p
_g 10-2 1000 o mtp——Kts*t §
— Q - .0 3
o — " A T p n°n 3
\b Nu IAAN T
o _ S 100 EX =
10-3 K EY E
e = ]
0 — .
Y
= 0E E
= - :
° [ =
L E
10-5 =
o.l 1 | ! | 1 ] haRel
O 0.8 TG 7z 32
—t (GeV/c)
-t (Gew/c)2
Fig. 2.1.3. The np elastic cross section at 5.0 GeV/c is com-
Fig. 2.1.2. Figure from Eide et al. [104] showing the elastic pared with n*p - K*2* and #7p - n°n at large 7.
differential cross sections at 5§ GeV/c for pp, n*p, n”p, K*p,
K™p and pp.

Differential cross sections at p; ,p = 5 GeV/c for pp, pp, 7°p, K*p elastic scattering are shown
in fig. 2.1.2. In fig. 2.1.3 7~ p elastic scattering is compared with #*p > K*Z* and n7p - n°n.
Except for pp scattering, all the other large angle cross sections are remarkably similar in magni-
tude at this energy. There appears to be no solid explanation for the special role of pp but the
striking similarity in size of the other cross sections at 90° compared with the large differences in
the size of the peripheral peaks indicated in fig. 2.1.1 is worth noting. Evidence discussed below
suggests that the pp cross section falls with energy more rapidly than the others so there may be
an energy regime where they are all comparable.

When considering the energy dependence of the large-angle differential cross sections, it is im-
portant to note the fact that low-energy non-diffractive cross sections in the forward and back-
ward regions exhibit a rapid falloff with energy before the emergence of the peripheral peaks. This
fact has been emphasized by Lundby [182]. Fig. 2.1.4 shows backward K*p elastic cross sections
as a function of laboratory momentum. Both reactions initially exhibit a rapid falloff at low ener-

- gies which, for K*p, is replaced above s = 4 GeV? by a slower energy dependence as the peripheral
peak emerges. No backward peak is observed in K™ p scattering until even higher energies and for
this reaction the initial energy dependence is maintained much longer. Fig. 2.1.5 demonstrates
this same point. The data for backward pp scattering show another reaction where, in an exotic-
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Fig. 2.1.4. Energy dependence of backward K*p and Kp
elastic scattering. Fig. 2.1.5. Backward elastic pp scattering.

exchange channel, the typically rapid low-energy falloff of the cross section continues to a fairly
high energy. A possible connection of the low-energy mechanism which is responsible for this
rapid falloff with the dynamic mechanism responsible for the high-energy fixed-angle cross section
will be discussed in section 4.5. This may be an interesting point to explore further since behavior
of the low-energy cross sections is usually attributed to specific properties of the low-lying direct
channel resonances. '

One corollary of this observation is that it is possible to extrapolate the large-angle cross sec-
tions from low energies to high energies without encounting the type of dramatic break observed
in fig. 2.1.4 for backward K*p. As an example the K*p elastic cross section as measured by Baglin
et al. [19,20], Danysz et al. [96], Akerlof et al. [3] and Yuta et al. [229] is shown in fig. 2.1.6.

Of course, the best reaction for a detailed study of the energy dependence of the differential
cross section at large angles is pp > pp where we have good data over a large range of energy. The
pp differential cross section at 60°, 70°, 80°, and 90° is shown as a function of In s in fig. 2.1.7.
The lines drawn through the data indicate the possibility of dip structure in the cross section at
these large angles. This structure, as well as fits to the data based on current models will be dis-
cussed in more detail later. One feature in the data which is notable is the absence of any large
shrinkage effects — the cross section at different angles is falling at approximately the same rate.
This indicates the possibility of approximately factorizing the cross section at large angles into a form

% (5, COS0)| o sy = S(5) g (cOSE) . (2.1.2)
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Fig. 2.1.6. K*p scattering at 90° in the c.m.

This factorization is indicated more clearly in fig. 2.1.8 where the pp cross section data at differ-
ent energies normalized to the 90° cross section are plotted as a function of cos 8. It is interesting
to investigate possible corrections to eq. (2.1.2) but we will defer this until we can discuss the im-
plications of various possible models for the cross section.

The systematics of differential cross section measurements are important but if we are to deduce
amplitude structure for the various processes it is necessary to have more information. Polarization
measurements are obviously important but, because of the small counting rates, there have been
very few polarization experiments extending to large angles. The data of Abshire et al. [2] include
polarization measurements for pp elastic scattering out to ¢ = —6 GeV?2. This data is shown com-
bined with some small-¢ polarization measurements in fig. 2.1.9. Two features are notable. The
polarization does not vanish at large ¢ at this energy and there is evidence for some structure,
perhaps double zeros at t = —1, —2.5, —4 GeV?. We can conclude that a single spin amplitude
does not dominate in this range of momentum transfer and that the different amplitudes have
potentially complicated behavior at large momentum transfer.

Another type of structure which may be important at large ¢ consists of rapid fluctuations of
amplitudes with energy or with angle. This behavior, known as Ericson Fluctuations [113], is
familiar in nuclear physics. Experiments designed to look for Ericson fluctuations in pp elastic
scattering have not reported any evidence for the phenomenon. Allaby et al. [5] examined pp - pp
at 16.9 GeV/c over a range of angles and Akerlof et al. [3] looked at 0y = 90° over a range of
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Fig. 2.1.7. pp elastic scattering at fixed c.m. angles as a function of In (s/so) with sq = 1 GeV2. Figure taken from Hendry [146].
Data are from LBL summary.

energies without seeing any sharp structure. F. Schmidt et al. [210], motivated in part by a pre-
diction of Frautschi [123], have looked at #*p > #*p at S'GeV/c. The incident beam possessed at
a momentum spread Ap = 120 MeV/c but the final state scattering angles were measured with
sufficient accuracy to calculate the incident momentum of a given event to Ap = 14 -20 MeV/c.
This allowed the data to be divided into two bins with momentum greater than or less than aver-
age. At each ¢, an asymmetry parameter was defined by

NH)-NC)

A N®+N(E)

(2.1.3)
Data on A are shown in fig. 2.1.10. The large asymmetry, particularly indicates that, in some ¢
bins, the cross section may change by a factor of 3 when the incident energy varies by 36 MeV.

It would be interesting to verify this result in other experiments and look for these fluctuations
in different reactions and at different energies.

In summary, the main features which can be extracted from the data on large angle exclusive
scattering are quite simple. The falloff with energy of differential cross sections is roughly like
578 — 5710 in contrast with the s® — s~2 observed in high energy peripheral peaks. There is the pos-
sibility that this rapid falloff is connected to the energy dependence of cross sections close to
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threshold so at large angles we have a smooth continuation from high energies to low energies. The
pp elastic cross section is much higher than #*p, K*p and pp elastic but may be falling more rapidly.
There are some indications from new data on polarization and Ericson fluctuations that large angle
amplitudes are not completely smooth and featureless. The question of whether all these features
of the data can be accommodated within the framework of existing theoretical ideas is very
interesting and we will address this problem in some detail below.

2.2. Single particle inclusive experiments

In this section we discuss experimental data on the single-particle inclusive process
AB - C + anything , 2.2.1)

where the detected particle is observed to have large transverse momentum. The important
features of the data include the shape and energy dependence of the inclusive spectra, particle
ratios, and the connection of the high-p spectra to those measured at low py.

The first high-p.. single-particle inclusive measurements at the CERN—ISR reported a yield
much larger than had previously been expected. As shown in fig. 2.2.1, the invariant cross section
for producing hadrons with p; = 5 GeV/c is approximately 103 times larger than the value given
by a simple extrapolation of the exp (— 6p;) dependence found to be valid in the region 0.15 <Py
< 1.0 GeV/c. The current high energy experiments with substantial data for the production of
particles with p; > 2.0 GeV/c are listed in table 2.1 along with some of the important experimental
characteristics. This table is an updated version of a similar listing given by Ellis and Thun [111].
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Fig. 2.2.1. Data from the CCR collaboration at the CERN—ISR on the inclusive process pp — #° near 90° in the CM demonstrating
the excess yield over an extrapolation of the form exp (-6 pr) fitted to the low pt data.
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Table 2.1
Measurements of inclusive single-particle cross sections at large p1
Experiment Reaction Detector c.m. energy pPT range c.m. angle
(GeV) (GeV/c) (Degrees)

235 2.8-46
30.6 3.0-6.4

CERN-Columbia-
Rockefeller (ISR)

} pp — 7© +anything Lead-glass 448 26-59 90 30
Busser et al. [66] 52.7 2.6-9.0
62.4 29-4.6
Saclay —Strasbourg pp > X* + anything Magnetic 23.2, 304 1.0-3.0
(ISR) (X not identified) spectrometer 444, 527
pp — 7%  +anything and 4.4, 527 3.0-5.0 90
Banner et al. [23] pp + anything shower counter 444, 527 1.0-3.0
British—Scandinavian nt Single-arm 44 1.3-3.2 59 39
(ISR) spectrometer 53 1.3-5.0 59
pp > K* +anything with two magnets 23-62
Alper et al. [7-9] pp Cerenkov counters 44 1.5-4.7 90
added? 53 1.5-4.6 90
Chicago—Princeton nt
Fermilab pW— K* + anythin Magnetic 19.4 0.8~7.3 77
pBe-p, P anything spectrometer 23.8 0.8-7.6 89
Cronin et al. [93] dd 27.3 0.8-7.2 96
Fermilab . Fixed angle in
Carey et al. [71,72] ] PP — + any thing Lead-glass 9.8-274 0.2-3.0 lab = 100 mrad
Columbia—Fermilab pp — 7®  +anything ;
Appel et al. [12] } pp ~h™ +anything Lead-glass
CERN-Paris—
Heidelberg ot . ISR split field
Karlsruhe } pp—~h" +anything magnet facility 525 2-4 9-2

Cottrell et al. [90]

The fact that the number of completed experiments is still small enough so that they can be in-
cluded in this table is important as a reminder of how new this subject really is.

A notable fact of table 2.1 is that all the experiments we will discuss here measure proton—
nucleon collisions. Experiments with pion or other types of secondary beams are still only in the
preliminary stage. As we go through the following outline of results it is important to keep in mind
that the various experiments are in substantial overall agreement. There are some problems con-
cerning the relative normalization of the data from different experiments but these are minor in
view of the fact that, with the steeply falling cross sections, a 10% error in measuring the absolute
value of the transverse momentum can lead to more than a factor of two in the absolute value of
the cross section.

The CERN—Columbia—Rockefeller collaboration (CCR), have measured #° production at the
CERN-ISR. Gamma rays from the decay of a 7° are detected in an array of lead-glass counters.
The two photons from the decay of a 7#° are not spatially resolved and the total photon energy is
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measured. The contamination in the signal at large p; from n production is suppressed since the
decay of an n would lead to photons in different counters and would be counted as two 7°’s with
lower transverse momentum. A more recent experiment shows that n°/7° ratio = 0.55 + 0.11 for
py in the interval 3 to 5.6 GeV/c (Busser et al. [67]). Due to the large kinematic region spanned
by this experiment, the global dependence of the data is extremely important. The claim is that
all the data can be fit to the empirical form (GeV units)

3
Edo_4 exp (— bxy) (2.2.2)
&p  py

(see eq. (1.2.3) in the Introduction) where x; = 2py/A/s, A =15.4 mb, n = 8.24 + 0.05 and

b =13.05 £ 0.25. Because of the systematic errors the data are consistent with n = 8 which was

the power predicted by the constituent interchange model (Blankenbecler, Brodsky and Gunion

[41,42]) for this process.

Three other experiments have measured y-ray yields. The Saclay —Strasbourg collaboration (SS)
have data on pp - v for values of p; < 3.0 GeV/c. These measurements can be converted to #°
spectra assuming there is no other major source of high energy photons so that the interpretation
of the data requires suppression of n production. The SS results generally support the p; and
energy-dependence of the CCR data in the region of overlap except that an overall normalization
factor of approximately 0.7 is needed which brings (2.2.2) into agreement with the SS rate (see
Busser et al. [67]).

The FNI collaboration (Carey et al. [71,72]) measured pp - v + anything at Fermilab for fixed
lab angles of 80, 100 and 120 mrad. For incident proton energies from 50 to 400 GeV/c. This
translates to a range of 6y from 40° to 110°. Converting to a #° invariant cross section they fit
their data at all angles to the form (GeV units)

Ed3c

d3p
where xp = p*/p,.., is the radial scaling variable. Since the bulk of the data is at a lower energy
than either CCR or S8, it is difficult to make a direct comparison. There appears to be no direct
conflict but the form (2.2.3) when extrapolated does not agree with other data.

The final v experiment we will be discussing here, a Columbia—Fermilab collaboration (CF)
(Appel et al. [12]), used a beryllium target. When converted to produce the cross section per
nucleon the experimental results indicate a good agreement with a modification of the CCR fit
designed to fit smoothly onto the low-p; data. The quoted parametrization, given in eq. (1.2.3),
gives some support to the results of CCR but there are some normalization problems associated
with the nuclear target which we will discuss below.

The inclusive production of charged particles in proton—nucleon collisions has been measured
by three groups, the Saclay—Strasbourg collaboration (SS) and the British Scandinavian collabora-
tion (BS) at the CERN-ISR and the Chicago—Princeton (CP) group at Fermilab.

The Saclay —Strasbourg group (Banner et al. [23]) measured both charged particles and #°’s.
One of the first high p; experiments, their original results are consistent with the more detailed
results reported since.

The CP experiment (Cronin et al. [93, 94]) has measured the production of charged hadrons at
PrLap = 200, 300, 400 GeV/c at Fermilab. The measurements were taken at fixed laboratory angles
but these were chosen to be near 90° CM in the energy range scanned (77°, 89°, 96°, respectively).

(pp » m°X) « (1-xg)*(p2 +0.86)~*%, (2.2.3)
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Fig. 2.2.2. Dependence on the atomic number 4 of the nuclear target for the reaction p + A —n + anything as a function of p.
Data from CP collaboration.

The experiment was run with nuclear tungsten target. At 300 GeV/c the measurements were
repeated with other targets in an attempt to understand the nuclear effects. The first result, indi-
cated in fig. 2.2.2, is that the variation of the invariant cross section for # production with the
atomic number A is approximately linear for large p. This suggests the approximate validity of
the impulse or single-scattering approximation inherent in the parton model. At small p; the cross
section is supposed to scale more like A 4 = oabs/op. The fact that the large pp cross section is
closer to being proportional to A!! than A and that particle ratios depend on A4 in a nontrivial
way at large py, indicates there may be some additional rescattering effects but these will not be
considered further here.

One important aspect of this experiment is the large values of x| = 2pT/\/E at which cross
sections are measured. For 7* production they measure out to an x of 0.72 while the CCR meas-
urements for #° are all taken below x = 0.35. This means that CP are sensitive to the x depen-
dence of the data in spite of their comparatively small range of v/s. For x = 0.4, the pion data
can be parametrized by a form

Ed’s

d3p
For x; < 0.35 the data agree with the CCR experiment. The effective power of s in the CP data
(see Cronin [92]) is shown in fig. 2.2.3 plotted against x. For low x, the power of 5 in this type
of parametrization is sensitive to finite mass effects and, for x; = 0, must equal zero in order to
agree with Feynman scaling.

Particle ratios in the CP experiment are shown as a function of p in figs. 2.2.4 and 2.2.5. In
view of the evidence that there might be some nuclear effects which are important in the particle
ratios, it is important to look at the particle composition from pp collisions. The British Scandina-
vian data on particle composition at v/s = 52.8 GeV is shown as a function of py in fig. 2.2.6. The

o« 5755202 exp (—(36.0 + 0.4) x} . 224
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Fig. 2.2.7. Figure from Cronin [92]. Global dependence of data on pN — #X is demonstrated by the behavior of cross section at

fixed pr and fixed x.

overall agreement is quite good. It is notable that the ratio K*/#* appears to approach an asymp-
totic constant while K™/x~ and p/n~ are falling. It is interesting that p/p = 1 near p; = 1 GeV/c.
Another important measurement from these two groups is the detection of heavy particles. The
CP data on deuteron and antideuteron production are shown in fig. 2.2.5. In the momentum inter-
val 2 < p; < 5 GeV/c the BS collaboration report a ratio

p/D=1.2x103
and a ratio
d/d=3.5+1.5.

(2.2.5)

(2.2.6)



30 D. Sivers et al., Large transverse momentum processes

p+nucleon —= p +anything

TT [T T T T [ T T T T [ T T T T 1T T 17717
47 6.8 1.4 237 44.6 63 400
i }_
"""" P
@)
—————— 1.0 __1
’\0.05 -
—————— 2.0
— _
o 1 . -3.0
@ —
<
o
§ _-4.0 _
b| &
(% -
My
<
+ BS
0o oSS 7
x,=1.0 0,50 o CcP
-38 ] L S @ Biobeletal. —
f(g‘oﬂmﬁc Y Akerlof et al.
- \ O Allaby et al. —
o T U T T T T A O Y B I 0 B
2 3 4 5 6
fn /s

Fig. 2.2.8. Figure from Cronin [92]. Data on pN — pX at 90°.

Comparison with the deuteron—antideuteron ratio of CP shows that the ratio (2.2.6) is strongly
s-dependent and consistent with approaching 1 at small p;.

To study the global dependence of single particle inclusive data the plots in figs. 2.2.7 and 2.2.8
due to Cronin [92] are valuable. These graphs show the cross section on a logarithmic scale plotte '
against In s. The lines drawn in are contours of constant p; and constant x ;. These figures clearly
show the absence of and importance of data extending to large values of x; in the CERN—AGS-
Serpukhov energy regimes. In view of the smoothness with which exclusive cross sections at large
angle continue down to low energy it would be extremely interesting to see the “low-energy”
behavior of the large p cross sections observed at Fermilab and the CERN—ISR. What low-energ;
data does exist joins smoothly onto the large pp—large s data and, on this plot, there does not
appear to be a sharp distinction between the large p; and the low p regimes. An interesting fact
(Walker [225]) is that the energy dependence of the large p; m-production data is similar to the
energy dependence of p production at low p. This is illustrated in fig. 1.4, reinforcing the feeling
of continuity between the large p; and small p regimes. Perhaps the initial conclusions empha-
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sizing the difference of the two regimes based on an extrapolation of the exp (—6p;) form were
not well founded.

The single particle inclusive spectra presented here will soon be supplemented by new data in
other kinematic regions and with other beams. We will return to expectations for this data based
on fits with current models to the existing data in section 5.

2.3. Data on correlations and associated multiplicities

The most decisive tests of models based on specific dynamical mechanisms involve the complete
phase space structure of individual events containing a large p particle. Until such data are avail-
able we can construct partial tests using available data on two-body correlations and associated
multiplicities. Since the experiments which measure these quantities are much more difficult than
single-particle inclusive measurements, we can only make a beginning at answering those questions
which enable us to discriminate between different models.

In order to understand the issues involved, recall that hard scattering models assume the exis-
tence of a quasi-two-body subprocess which leads to large transverse momentum in a single step.
This substructure can be used to define the jet hypothesis. Event-by-event, the population of
secondary hadrons is confined to the usual low p; region and to two approximately coplanar
regions along the direction of the high p; particles. These jet axes approximately coincide with
the direction of the underlying constituents after scattering. The jet hypothesis is illustrated in
fig. 1.6 taken from Savit [208].

When we detect a large transverse momentum hadron, say with a finite value of x; = 2p;/\/s,
we know that its momentum must be balanced by the other particles in the event. It is a dynami-
cal question kow this balancing takes place. If it is balanced only by particles with small transverse
momentum, one obviously needs a large number of these associated particles, at least

(np) = 3 xpV/sKpp) = prlipg) . (2.3.1)

If, on the other hand, there is an underlying hard interaction the momentum can be balanced by
one particle with equal and opposite transverse momentum, Most models choose intermediate
behaviors for associated multiplicity, often logarithmic. A more detailed discussion of the model
predictions can be found in the review of Bjorken [34].

One type of experiment which is extremely valuable is that done by a Brookhaven—Purdue—
Virginia Polytechnic collaboration (Anderson et al. [11]). Using a multiparticle spectrometer
system (ARGO) they measured the mean charged multiplicity associated with a high transverse-
momentum proton or pion. The data on (n (py, M )’ for the reaction

pp>pt+X

at p; A5 = 28.5 GeV/c are shown in fig. 2.3.1b as a function of the transverse momentum of the
proton for different values of missing mass. A striking feature of the data is a rise of A{n_) charged
particles over an interval of approximately 0.3 GeV/c in p;. The location of the structure moves
to smaller p, as the missing mass increases. The position of the structure is found to be approxi-
mately fixed in angle at around 6.y, = 33° (tan 0, = 0.66). The structure is seen in all pronged
cross sections. Qutside the region of the rise (n (py, M )) is approximately independent of trans-
verse momentum except for possible kinematic effects. This type of sudden structure was not
predicted by any model. Possible explanations such as a change over from one fireball to two
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Fig. 2.3.1. Figure from Anderson et al. [11]. (a) shows data on associated multiplicities for the reaction pp — #*MM and (b) gives
associated multiplicities for pp — p + MM. In both reactions the multiplicities plotted include the trigger particle.

fireballs or a damping of bremsstrahlung in a hard scattering model do not seem to work in detail.
However, Alonso and Wright [6], find the sharp transition in multiplicity can be accommodated
inatwo component model consisting of a hard scattering term plus a normal hadronic background.
There is a definite need for more theoretical work in this area as well as more experiments of this
type at both higher and lower energies.

The same group has also presented data on (nZ(p, M )) in the reaction

pp - 7t + anything

which is plotted in fig. 2.3.1a. These data also show a jump structure. An interesting fact is that
the difference A = (nf(py, M)) — (ng(pg, M )) is almost independent of both p; and M over the
entire kinematic region. A plot of this quantity is shown in fig. 2.3.2.

As interesting as the Brookhaven—Purdue—Virginia Polytechnic data are, we cannot be sure
that we are at high enough energy to be sensitive to the same dynamics that dominate FNAL and
ISR. Its real importance for our present purposes is that it provides a basis of comparison for
higher energy data to come. We therefore turn to data from three ISR experiments which have
reported results on multiplicities associated with a large transverse momentum particle. None of
these experiments measure the momentum of the associated particles and none have acceptance
over the full solid angle.
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Various bins in missing mass are plotted as a function of p. 62 GeV as a function of pr of a trigger photon detected at

ocm = 90°.

The Pisa—Stony Brook experiment (see Del Prete [98]; Finocchiaro et al. [120] on charged
multiplicities associated with a large transverse momentum <y has a detection system covering
around 80% of the full solid angle. Data in fig. 2.3.3 demonstrate the rise in multiplicity as a func-
tion of p; of a y emitted near 8, = 90°. The data are normalized to the multiplicities at each
energy with a low p trigger.

In the absence of any measurements of the momentum of the associated particles, the experi-
menters made a parametrization

(A5, pp)) = (Y (Vs = 2p)) +(n®' (s, pr)) (2.3.2)

where (n'°Y(\/5s — 2p;)) is the value of the average multiplicity of low transverse momentum
events evaluated at the “reduced” energy /s — 2p. With this crude correction for phase-space
effects the value of <njet(\/?, p)) is found to be roughly independent of energy

(n*'/s, pr) =~ 0.5 pg , (2.3.3)

see fig. 2.3.4. Comparison with eq. (2.3.1) shows a contradiction unless (p;) = 2 for the balancing
particles.

When we ask where the extra particles associated with a large p; <y appear in phase space, we
see from fig. 2.3.5 that they are concentrated in the opposite hemisphere from the trigger in a
large neighborhood around zero rapidity. Momenta are not measured so the data are plotted as a
function of n = log tan (6, /2). Since the data are normalized to low p triggers the usual two
particle correlation effect is divided out or, depending on your point of view, folded in. The basic
behavior of associated multiplicities with energy and p is confirmed by the other experiments.

The azimuthal dependence of the multiplicity in a region around n = 0 is shown in fig. 2.3.6.
Again the data is renormalized to a small p trigger. The multiplicity does peak in the direction
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opposite the detected vy as suggested by simple ideas concerning the conservation of momentum.
The width of the distribution in the azimuthal angle ¢ is quite broad, corresponding to A¢ ~ 100°
FWHM. The data may also be consistent with a simple form of the jet hypothesis if, in addition to
a large transverse momentum jet in the opposite hemisphere there are also many low transverse
momentum particles. Momentum measurements of the associated particles would prove very
interesting. Data from the CCR group on azimuthal correlations between 7°’s has been parame-
trized

C(¢) =exp [—B sin A¢] , (2.3.5)

where A¢ is the deviation in azimuthal angle from 180°. When both m,’s are restricted to be larger
than 2 GeV/c they find B = 1.5 + 0.2, This translates into an average component of momentum
normal to the hypothetical scattering plane of

(pn) =13 GeV/e.

This is considerably broader than is expected from simple ideas concerning jets where the spread
around the hypothetical jet axis is expected to be about the same as the average momentum
spread around the beam direction in “soft” scattering events. One way of quantifying this lack of
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coplanarity (due to J.D. Bjorken) is to make the strong assumption of a random walk around the
jet axis so that the normal component of momentum is expected to be

(p) = \/_ \/‘ (2.3.6)

where (p) is the average transverse momentum in a typical hadronic process. In the parton model
this equation might be expected to be approximately true with n = 4 reflecting the 2 - 2 nature
of the hard scattering process while (p;) = 0.3 — 0.4 GeV/c. If we do not introduce a new large
mass scale into the large p; processes we are left with the alternative of considering a large number
of degrees of freedom,

n=20-35 (2.3.7)

in (2.3.6). Since this number is not small compared to the average number of particles produced
in a collision at the ISR, it suggests that most particles participate in the “balancing’ of the trans-
verse momentum.

The Pisa—Stony Brook collaboration have also triggered their apparatus at Eqy =53 GeV ona
large transverse momentum photon coming out at 6y, = 17.5° £ 4° (n = 1.9 £ 0.2) instead of
Oy = 90°. In the new setting a photon has nearly 3 times the CM energy of a photon with the
same transverse momentum at 6y, = 90°. The normalized total multiplicity, shown in fig. 2.3.7,
still displays a rise with py but it is less rapid and begins at a larger value of p; than in the 90° data.
The angular distributions of the normalized multiplicity are compared with the 90° data in fig.
2.3.8. There is a substantial depletion in the number of particles at angles equal to or smaller than
that of the photon. This effect may be due to energy and longitudinal momentum conservation.
Remember that the data are normalized to low transverse momentum events where there is a posi-
tive correlation when two particles both have n = 2.

The direct comparison of the data at 90° and 17.5° suggest that, roughly independent of the
longitudinal momentum of the trigger particle, its transverse momentum is balanced by the emis-
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Fig. 2.3.7. Average total multiplicities of charged particles as a function of the p of the detected photon at 6cpm = 90° and
oCcM = 17.5°.
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sion of particles at approximately 0y, = 90° and spread over a wide range of azimuthal angle. The
behavior is roughly consistent with a jet hypothesis but might conflict with the most naive forms
of the parton model with narrow coplanarity.

In the studies of events associated with high p; photons the Aachen—CERN—Heidelberg—
Munich collaboration (Betev et al. [31]), triggered on a photon and then examined the correlation
between two other particles. This important correlation function was positive over a range of
n =~ 2 and seemed to have no strong dependence on the transverse momentum of the trigger v.
This tends to say that the short-range-order hypothesis (i.e., that the correlation distribution has a
fixed range in rapidity) does not break down for those events containing large p, particles.

The CERN—Columbia—Rockefeller collaboration (Busser et al. [67]) have measured the corre-
lation function

E,E,dg/d%p, d°p,
(E,do/d®p,) (E,do/d3p,)’
for two large pr m°’s. The data for 7,’s on opposite sides are shown in fig. 2.3.9 and compared

with curves calculated from the “uncorrelated jet model”. The “uncorrelated jet model” consists
of a factorizable matrix element and no dynamic correlations. To the extend the data agree with

R(p,,py) = (2.3.8)
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Fig. 2.3.9. Data from the CERN—Columbia- Rockefeller collaboration on the correlation function, e.g., (2.3.8), for pp — n°2°X,
the curves represent calculations in the uncorrelated jet model (phase space).
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Fig. 2.3.10. Correlation function for two large pp n°’s on the same side.

these curves we can conclude that the observed correlation is’just a reflection of conservation of
momentum. The correlation on the same side, fig. 2.3.10, indicates a substantial probability for
producing 7,’s in clusters. Whether this is just the same clustering effect observed at small p, is
not known. The plot of the distribution in the invariant mass of the 2#° system is displayed in
fig. 2.3.11.
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muthal direction of mg. 2 Trigger on g, charged particles in opposite hemisphere from mg.

The CERN-Columbia—Rockefeller—Saclay group have arranged lead glass behind a magnetic
spectrometer on one side of the ISR storage rings and a magnetic spectrometer on the other side
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in order to study w°-charged particle correlations. They trigger on a 7° with p; > 3 GeV/c and
measure the associated probability of having a large p; charged particle. The data at /s = 52.7 GeV
is shown in fig. 2.3.12. When the charged particle is opposite the 7° we see an enhancement such
as that which might be expected on the basis of momentum conservation. When the charged par-
ticle is on the same side as the 7° we not only see some correlation such as might be expected from
clustering but the probability of having a large p; charged particle is approximately equal to what
it is on the other side. This feature does not seem to be natural in any simple model and it is impor-
tant to find out whether it persists at other energies and other choices for the particles involved.
The center-of-mass motion of the hard subprocess can effect the normalization of the opposite
side correlation.

We will return to the theoretical interpretation of these data in section 5.

2.4. The direct production of leptons

Another process which has attracted considerable theoretical and experimental attention in-
volves the production of a single lepton pair. In most of the hard scattering models we discuss here,
this process is related dynamically to the production of large transverse momentum hadrons and
we therefore feel justified in including in this section a brief digression from our main topic. In
addition, the recent observation of a heavy, narrow enhancement with mass 3.105 GeV in the
reaction pp »> 22~ + anything (Aubert et al. [17]) has intensified interest in understanding the
process away from the resonant peak. In this section we review the data on the hadronic produc-
tion of lepton pairs and the inclusive cross sections for single leptons and discuss briefly their im-
plications for models.

Fig. 2.4.1 shows the data of Christenson et al. [81, 82] on the cross section for the inclusive
production of lepton muon pairs. The shoulder in these data is now associated with the production
of the sharp enhancement observed by Aubert et al. [17] smeared by the resolution of the spec-
trometer. The smooth curve is the experimentalists estimate of the “background” process
pp - v + anything - ¢*2~ + anything. The continuum is parametrized at 29.5 GeV/c by

ddwo=2x 10732 (cm?) (1—7%)/ M58 | (2.4.1)
where 7= M [(s'? — 2my).

The most popular theoretical model for the production of a massive time-like photon is the
Drell—Yan mechanism (Drell and Yan [102]) in which the virtual photon is creased as a result of
a quark from one initial hadron annihilating with an antiquark from the other. This contribution
can be written in the form

2 1 _ —
Lo - (377—3"‘-) C};B {12 of dx dy [Z)e,?(F,.(x)F,.(y)+ F,.(x)F,.(y)):I 6(xy—12)} . (242)

where the F,(x) are the quark distribution functions. Perhaps the closest analogy with large p
hadronic processes involves the subprocess quark —antiquark annihilation into two high p, mesons
as described by Landshoff and Polkinghorne [174--176].

Since the quark distribution functions are in principle separately determined from data on
electroproduction and neutrino interactions, the formula (2.4.2) involves no undetermined coeffi-
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Fig. 2.4.1. Figure taken from Lederman [179] displays the data on pN — u*u™ + anything at BNL. The solid curve represents a fit
after the effects of the ¢ (3100) and ¢ (3700) are removed.

cients. There is an uncertainty of a factor of 3 depending on whether or not quarks carry SU(3)
color. This contribution alone does not seem able to describe the data. Note particularly that the
M -behavior at fixed 7 does not agree with (2.4.1).

A different model has been suggested by Berman, Levy and Neff [30] in where there is the
production of a virtual charged particle which bremsstrahlungs a massive photon. This model is
not absolutely normalized since we need to make some assumptions about the production of off-
mass-shell particles. Using something like inverse vector dominance logic we can argue that any of
the mechanisms we have discussed, CIM, fireball models, etc., which can create vector mesons can
be used to make massive photons. These extra mechanisms may perhaps make up the difference
between the data and the contribution from quark—antiquark annihilation.

Recently a number of experiments have reported data on the inclusive reaction (Jain et al. [157];
Boymond et al. [56]; Appel et al. [13])

p + nucleon - (Iepton)* + anything , (2.4.3)

(where the “direct” leptons are those not attributable to 7 or K decays) for+/s between 11 and
53 GeV. As demonstrated in figs. 2.4.2 and 2.4.3 experiments are in agreement with the observa-
tion that the ratio

pjm=10"% 244

is approximately independent of p. The Drell-Yan mechanism and the other methods of produc-
ing massive lepton pairs can contribute but are to be small. Since the ratio is roughly constant, this
employs a power p;s at fixed M ?/s approximately the same as hadronic production, which is quite
difficult from the p7* prediction of the Drell-Yan mechanism. Of course, we expected contribu-
tions from the decays of p°, w® and ¢°. Since these are expected to have 'the correct p dependence,
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Fig. 2.4.2. Data on pN — p* + anything at 300 GeV/c from
the Chicago Princeton collaboration. As do many other experi- Fig. 2.4.3. A comparison of direct electron production as
ments, they find muon/pion ratio of approximately 107 measured by the CCRS group with charged pion production
independent of p. as measured by the BS group.

let us see whether the ratio (2.4.4) can be attained. In the spirit of cluster models (see the review
of Ranft [203]), let us consider the most extreme case and assume that a significant fraction of
all 7’s observed come from the decay of the known vector mesons. With equal production of

et 07, p% W= 3nt+ 377+ 37° + (0.67+0.76) X 10~ *u*u~
we could expect a ratio
wimt=1x1.43x10%=0.48 x 1074

Now if there are substantial ¢’s produced a reasonable contribution from their leptonic decays

can be expected. If we assume g(0°) = 0(p*) = 0(w) and put in the fact that the production of ¢’s

from proton—proton collisions should be suppressed dynamically o(¢,) = €0(p°) we get a ratio
*_1.43+2.5¢

L: -4
-+ 3+015e 2107

which can be made roughly consistent with the experimental ratio if € is fairly large. The experi-
mental data on ¢ production (Busser et al. [67]) yields
0(po) o(m~) < 0(¢y)/30(p,) = 56 < 0.2

but from other sources (for example, {dg/d¢ (" p - ¢n)}/{do/dt(x~p » wn)} < 1/280), we might

expect € to be much smaller.
If we neglect ¢ production as a source of u’s we are left with a large cross section to explain,

for example, the production of charmed particles or of , '".
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Now because of the large branching fraction of the {/(3105) into lepton pairs (Augustin et al.
[18]) we can use the single lepton cross section to put an upper bound on the production of ’s
in high energy pp collisions. Using the above assumption we get

o(Y)/o(py) < 2.8 X 1073, o(Y)/o(7*) < 9.3 x 1074,

This is considerably larger than the observed ratio of cross sections at BNL or FNAL so that unless
the amount of ¢ production grows significantly with energy the new particles do not give a major
contribution to the single lepton rate.

3. Models without pointlike constituents

It is an interesting exercise to see how we would go about describing the large-transverse momen-
tum behavior of hadronic models without pointlike constituents. Since the quarks within hadrons
are well hidden, it is possible that, at some level, we do not need to invoke quarks as essential
degrees of freedom to describe the dynamics of hadronic collisions. It seems evident, for example,
that the diffractive scattering of high energy hadrons has very little to do with the interactions of
individual quarks. On the other hand, deep inelastic lepton scattering data display strong evidence
for quark-like constituents in the proton. Without careful discrimination, it is not immediately
clear whether large-transverse-momentum hadronic processes will be sensitive to quark structure.

We shall see here that nonparton approaches to large-angle scattering processes have been rela-
tively successful. For present data, their predictions are at least as successful as those of constitu-
ent models. To describe inclusive data, however, models without partons must apparently find a
new framework or new dynamical mechanisms in order to be competitive.

3.1. Nonparton models for fixed-angle scattering

Models for the scattering of two hadrons through a large angle at high energy are divided
naturally into two classes according to whether the underlying interactions is governed by a dis-
tance scale or whether it is pointlike. Dual models (Krzywicki [166,167]), geometrical models
(Chu and Hendry [83, 84], Schrempp and Schrempp [212, 213]), statistical models (Frautschi
[123], Eilam et al. {105]) belong to the former class while the second group relies on ideas based
on pointlike constituents tested in electroproduction. The parton model (Abarbanel, Drell and
Gilman [1], Horn and Moshe [148]), constituent interchange model (Blankenbecler et al. [41,42]),
the massive quark model (Preparata [200]), and the constituent counting rules of Brodsky and
Farrar [62] and Matveev et al. [183] based on study of Feynman diagrams are examples of models
without a distance scale. More details can be found in the article by Sivers [216].

Historically, one of the first formal discussions of high energy fixed angle amplitudes was in the
form of a lower bound developed by Cerulus and Martin [75]. This work was very important in
that it first showed how an amplitude at fixed angle is constrained by analyticity postulates.

The bound of Cerulus and Martin occurs if we assume:

1. The amplitude, A(s, z), has the usual Mandelstam analyticity. That is, it is analytic in the z
plane cut from —e to —(1+¢/s) and from (1+ ¢/s) to +o where ¢ is some constant;

2. There is a finite domain in the z-plane in which the amplitude is bounded by sV

Through the use of a clever conformal mapping and the application of Hadamard’s three circle
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theorem, Cerulus and Martin showed that these assumptions imply the fixed angle lower bound,
lA(s,2)| = dexp{—c(z)s'? Ins] , (3.1.1)

where ¢(z) is some positive function of z = cos 8.

Aside from being a triumph in the application of complex variable techniques to high energy
physics, the bound (3.1.1) has turned out to have phenomenological impact. Motivated, in part,
by an empirical fit to the differential cross section of pp scattering by Orear [192],

(do/d2) = A exp(—q/qy) = A exp (—q sinf/q,) , (3.1.2)

where A = 34 mb/sr and g, = 0.151 GeV/c, Kinoshita [159] proposed that the bound (3.1.1) may
be saturated by physical amplitudes for angles outside of the peripheral peaks. He formulated the
principle of a “minimal interaction’ which implies that fixed angle scattering amplitudes should
assume the smallest value consistent with the general requirement of analyticity and unitarity.
This hypothesis implies the absence of any really “hard” component in hadronic scattering so that
instead of observing frequent collisions in which hadrons scatter through large angles we find
instead the production of new hadrons at high energy.

Using the uncertainty relation, Kinoshita’s conjecture can be given a simple geometrical inter-
pretation. Let us, for example, assume that there is an absence of fine structure so that the uncer-
tainty relation can be interpreted as an approximate equality for some A L(s), the range in angular
momentum in which the scattering amplitude is significant,

A(s,0)/A(s,0) = exp{—-AL(s) 6}, o<7/2. (3.1.3)

For pp scattering we can ask whether (3.1.3) can be valid with A L(s) determined by the diffrac-
tive channel alone,

AL(s)=3bys"?, (3.1.4)
with b, = 1 fm (5.1. GeV™"). For the 90° (§ = n/2) differential cross section this predicts

s? Stg (s,0=7/2) = exp {_ > %‘/E} « exp {-8.0s"%}, (.1.5)

which is much more rapid than the experimental falloff. We conclude that diffraction is negligible
at 90° and that a geometrical model for pp scattering must contain a peripheral component as well

as a diffractive one.
In fig. 3.1.1 we compare data on 90° pp scattering with a form

52 g—?(s, 0 =m/2) ~ const exp {— (Ab)im "2}, (3.1.6)

where Ab can be interpreted as the width of a peripheral band of partial waves. The value
Ab =048 fm (3.1.7)
is suggested by a study of the impact parameter in K p scattering (Schmid [209a]). On the same

graph the constituent counting prediction

gi; (s, 0=m/2)~ const s71° (3.1.8)
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Fig. 3.1.1. Comparison of the form (3.1.6) and (3.1.8) with elastic scattering data. The data are divided by the asymptotic form of
the constituent counting prediction (X) and the minimal geometric prediction (e). If we were in a region where the asymptotic
predictions of the model were valid the plot should be approximately constant. Both approaches do reasonably well.

is compared with the data. In view of the fact that the corrections to the asymptotic form expected
from each model are not known, the agreement of the data with the two alternatives is comparable.

As emphasized by Hendry [146] one advantage of the geometrical approach is the possibility of
a simple and direct understanding of the structure in the cross section in terms of fixed-¢ dips asso-
ciated with Bessel function (or Legendre function) zeros. The approximate double-zero structure
of the large-angle pp polarization data, fig. 2.1.9, is fairly direct evidence for a central plus peri-
pheral decomposition of the pp scattering amplitudes (Hendry and Abshire [147]).

Another reason for studying geometrical models is to test the region of validity of field theory
approach. The asymptotic constituent counting rules should be strictly valid in a regime where all
spin amplitudes are proportional so there is no polarization and where the amplitudes are smooth
and featureless. The present data may be in a transition region where both approaches are approxi-
mately valid due to some sort of duality which makes the application of simple asymptotic esti-
mates valid right down to small energies. Kane [158] has shown how the introduction of absorp-
tion effects into hard scattering models leads to an oscillating factor of t modifying fixed angle
powerlaw behavior predictions.

An alternate approach to fixed angle scattering assumes the existence of a large number of
direct channel resonances such as in dual models. While dual models in their simplest form violate
the Cerulus—Martin bound they can be interpreted in the spirit of statistical bootsirap models
(Frautschi [123]). If we consider the process ab - cd, neglecting spin and assume that in the
region of interest | 4|2 can be approximated by the incoherent sum of resonances

> (21+1)2 PP (cos 0) (v2 )2 (vE )2
11 (\/—_m“)z +4F',1

The sum in / extends over the range / € (0, gR), where R is a typical hadronic radius. If we neglect
the dependence of the residues over this range we can factor out the 8 dependence

1A(s,2)|2 (3.1.9)

090°—
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qR qR
£(s,6)=?(2l+1)2P,2(cos(9)/E(2l+1), (3.1.10)
0
and deal with the appropriate average quantities in the form

_ Q1) (1, V9 (7, g (V5))? p(V5) (5, 6)

|A(s,2)1? (3.1.11)
I'(/s)
Now the further statistical assumption of equal partition of probability among channels
Yo WSNHTW5) = (v, ¢ WNITW5) = 1/p(/5) (3.1.12)
allows us to simplify further
do ~ 1 TS 0y (3.1.13)

A2 g op B 64m2s p(/s)

By simple space-time arguments we know that a resonance cannot decay before a signal can
pass across a typical hadronic radius and that

FW/s) = OG/s) . (3.1.14)

The statistical bootstrap model gives, of course, a specific prediction for both I'(+/s), and p(\/s)
and has been compared to data by Eilam et al. [105]. The only parameters are an overall normali-
zation factor in the expression for the density of states and a small ambiguity concerning the value
of kT,. Fits to 7p and pp elastic scattering at 90° are shown in fig. 3.1.2 and compared to the
power behavior of constituent models. The agreement with the data is good.
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Fig. 3.1.2. Comparison of statistical bootstrap and constituent models for (a) n”p and (b) Pp elastic scattering at 90°.



D. Sivers et al., Large transverse momentum processes 47

A major flaw in the statistical approach is that no predictions are made for the behavior of
fixed angle cross sections in exotic channels. One possible way around this is to extend the ob-
served spectrum to exotic channels and just state that the density of states in exotic channels is
small. This would then imply, for example

do/dS2 (pp - pp) > 1 (3.1.15)
do/d2 (pp - pp)|e=90°

do/d2 (K'p > K'p) > 1 (3.1.16)
do/dQ2 (Kp—-> Kp)lo=90

which is in agreement with present observations. It would also seem that the naive approach would
imply large fluctuations about the mean in such exotic channels. This is not observed. Presumably,
the correct answer for exotic channels involves getting the spectrum in nonexotic channels right
and then implementing crossing.

There exists one solid piece of support for the existence of high mass resonance states of the
type necessary for the statistical approach discussed here. This consists of the rapid fluctuations
with energy of the large r differential cross section for #*p elastic scattering observed by F. Schmidt
et al. {210] and illustrated in fig. 2.1.10. The existence of these rapid fluctuations was predicted
on the basis of a statistical treatment of overlapping resonances by Ericson [113]. Their impor-
tance in terms of the statistical bootstrap program has been emphasized by Frautschi [123]. Basi-
cally we expect a large number of overlapping resonances which, on the average, have random
phases to be partially coherent in local regions of energy. The period of the fluctuations produced
should give a measure of the average resonance width and the relative size of the fluctuations
should vary inversely with the density.

It is impossible to learn on the basis of the single observation of fluctuations reported by
Schmidt et al. whether they correspond in period or size with those predicted by the statistical
model. Many more measurements of this type are needed but it does seem most natural to attri-
bute these data to some sort of high-mass resonance phenomena.

One of the most crucial distinctions between finitely-composite hadrons and infinitely-composite
hadrons involves the asymptotic form of Regge trajectories. There has been a considerable effort
to extend the constituent interchange model from the fixed-angle region into the fixed- region.
This effort has resulted in predictions for the large-f behavior of Regge trajectories. Let us con-
sider here the status of the predictions

lim e, ()= —1, lim (1) = —2. (3.1.19)

t—> o0 t— oo

This predictions can be tested by measuring the effective trajectory in #~p - 7°n and pp elastic
scattering. In contrast, dual or geometrical ideas would require infinitely falling trajectories.
Barger, Halzen and Luthe [25] have calculated an effective trajectory in pp scattering using

In gg (pp = pP) = (e e(£) —2) Ins + In (z) . (3.1.20)

This is shown in fig. 3.1.3. Blankenbecler et al. [47] have calculated the effective trajectory in
fig. 3.1.4a using
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In % (pp = pPp) = Cos (1) — 2)In (—w) + In (1) , 3.1.21H

which they claim is more consistent with the duality properties of the pp elastic amplitude. The
difference in the f-dependences of these two trajectory functions is primarily due to

2
In (—u)=1n (s+1—4m? =In (s) + In (1 4L 2m *84’” )

, (3.1.22)
and so the fact that the trajectory of Barger et al. falls below —2 should therefore not necessarily
rule out (3.1.19).

The p-trajectory extracted from charge exchange data of Brockett et al. [57] seems to fall below
the expected value of —1. However, elastic #7 p analyzed by Blankenbecler et al. [47] as shown in
fig. 3.1.4b supports (3.1.19).

Possibly more significant evidence concerning the large-t behavior of Regge trajectories is the
study using finite energy sum rules of the amplitude structure of 7~ p - 7°n. Elvekjaer et al. [112]
report that the large-¢ region the amplitudes are very similar to what is expected from a simple
p-Regge pole with a linear trajectory. In particular they point out the right-signature zero at
t = —1.6 and a second wrong-signature zero at t = —~2.4, —2.5 consistent with the places where a
linear trajectory would pass through —1 and —2 respectively. Their results are shown in fig. 3.1.5.
There is some feedback through the “optimized convergence” finite energy sum rule of the form
assumed for the trajectory function and the structure in the amplitude. However, if this structure
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Fig. 3.1.3. Effective trajectory in pp scattering of Barger, Halzen and Luthe [25].
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Fig. 3.1.5. Evidence for second wrong signature zero in A(r"p — n®n) discussed by Elvekjaer et al. [112].

is confirmed independently, for example, by amplitude analysis at large ¢ then it would argue quite
strongly for the existence of indefinitely falling trajectories.

3.2. Hadronic fireball approaches to large py inclusives

In this section we turn our attention to models which attempt to explain high p; phenomena
without invoking quark-like structureless constituents. These hadronic models instead relate the
production of large transverse momentum particles to ideas which have proved useful in under-
standing low p data.

The first, and one of the most important, thing to keep in mind is that based on purely hadronic
ideas there is no reason to expect large py inclusive cross sections anywhere near as large as they
have been observed to be. We can be more explicit about this. Two reasonably complete and self-
consistent models have made predictions for the p distributions of inclusive hadronic processes.
The dual resonance model (DeTar et al. [99]) predicts

Ed30/d3p|pLEO o exp (—4a'pl) (3.2.1)

(which conflicts with a simple extension of the Cerulus—Martin bound to inclusive process). The
statistical bootstrap model (Hagedorn and Ranft [ 138], Hagedorn [137]) gets

Ed3o/d3p|pLEO « exp (—pgp/m,) . (3.2.2)

Within the context of these models there is no apparent need for large p; events from some
sort of violent subprocess. The observation of large cross sections characterized by eq. (1.2.3) or
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fig. 1.1 then indicates that these models are wrong or, at best, incomplete and that they need to be
modified. The hadronic models we discuss here make modifications of a somewhat ad hoc nature,
invoking new mechanisms or new, unsuspected mass scales but we will temporarily overlook the
lack of internal theoretical motivation. The unexpected, large cross sections are motivation enough.
As is evident in the rest of this review the hard scattering models in which large cross sections are
expected are not without their own shortcomings. One main purpose in considering non-parton
models is to gain further insight into the problem of just how important it is that we consider
quarks to be an essential dynamical degree of freedom in large p; hadronic interactions.

Before we go on to consider the ad hoc models which attempt to describe the current data, let
us try to get the flavor of the two models which predict exponentially falling cross sections at
large p;. The dual resonance model prediction is based on a Mueller—Regge analysis of the dual
6-point function. Consider, for example, the term with the ordering of particles shown in fig. 3.2.1.

[}

I
£| 2

p———— O]
ol —— ol

Fig. 3.2.1. Labelling of the particles for the dual amplitude, eq. (3.2.3).

The dual model amplitude with this ordering has the discontinuity
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X (1=p,—»,)", (3.2.3)
where a,; = a((p,+135)?), a = a((p,+py+p.)?) = a(M?), etc., are the linear trajectory functions.
At fixed x and large p we have

Qpe = o = —a'pi/xp, (3.2.4)

and we get a contribution from the integrand near y, = y, = 3 proportional to (Virasoro [224a])

1+x
exp [—Za'p% (% In (l—xt))]' (3.2.5)

In the central region, x; = 0, this continues into the form (3.2.1).

The exponential falloff in p2 in the inclusive distribution of the dual model is related quite
closely to the fixed-angle behavior of the dual 4-point function. The absence of Regge cuts or
multiplicative fixed poles in the J-plane allows the exchange of a linear Regge trajectory to domi-
nate at large momentum transfers. It is important to keep in mind the fact that the dual model
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does not implement unitarity and that the simple predictions (3.2.1) and (3.2.5) are probably not
stable under the unitarization of the model. There have been some attempts to generalize such
results (Ellis and Freund [109], Sivers [216,217]) but these remain very speculative. The predic-
tions (3.2.1) and (3.2.5) are, of course, in drastic conflict with the data. This fact along with the
inability of dual models to define reasonable current amplitudes and form factors must now be
considered a major challenge to the continued application of the dual approach.

Hagedorn’s statistical bootstrap (Hagedorn [137]) constitutes another fundamental model which
does not invoke structureless quarks in order to make a definite prediction for the transverse mo-
mentum distribution. The basic postulate of the statistical bootstrap (Frautschi [122]) is that
there exists a spectrum of high mass hadrons and that the energy of interaction in hadron—hadron
collisions goes predominantly into the production of these massive fireballs. Consistency argu-
ments based on the unitarity equation then require that the density of hadronic levels is given by

p(M ) = CM® exp (M T,) (3.2.6)

where T, is a temperature and a < §. This hadronic density seems to be approximately realized in
nature by the observed low mass states as demonstrated by fig. 3.2.2. From this we deduce
T, =160 MeV.

The distribution in transverse momentum of the secondary decay products in the statistical
bootstrap model then follows from the fact that the dominant decay mode of the high-mass fire-
balls is the so-called cascade decay M* -~ M*' + m_. To the extent that we can neglect recoil mo-
mentum we expect this distribution in the fireball rest frame to be given by a Boltzmann factor

exp [—(p} +p} +m))"?IT], (3.2.7)
where the temperature, T, is closely related to the temperature in the density of states, (3.2.6),
T<T,. (3.2.8)

In high energy collisions, the superposition of fireballs with different longitudinal velocities
smears out the Boltzmann factor in the longitudinal direction but, since most fireballs are pro-
duced with small transverse momentum, the dependence in the transverse direction remains al-
most unchanged.

The fact that for a reasonable range of intermediate momenta the experimentally observed
transverse momentum behavior

Ed3g/d*p ~ c(p,) exp(—6p) (0.1 < p;<1.0GeV/e) (3.2.9)

agrees quite well with (3.2.7) where the value of T is given by T, in the density of states, (3.2.6),
was originally considered an outstanding success of the model. Now that we have to deal with new
observations indicating that the data at high transverse momentum be several orders of magnitude
above (3.2.9) we are faced with a problem. Do we believe that the agreement of low p, data with
(3:12.9) fortuitous or do we recognize the model as having limited range of validity? If we take the
latter viewpoint we can imagine that relaxing some of the assumptions of the model will enable us
to extend our understanding out to larger p.

Most of the models we discuss here, whether or not they follow precisely the spirit of the
statistical bootstrap model, retain the concept of the fireball and therefore share many conceptual
features. The idea of a fireball or cluster of hadrons has, of course, been a valuable aid in under-
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Fig. 3.2.2. The density of states in the statistical bootstrap of Hagedorn compared with observed hadronic resonances.

standing the correlations in low p; data. The review of Ranft [203] is particularly instructive in
outlining the importance of this concept.

One simple approach to large transverse momentum discussed by Jabs [151] is to introduce a
new class of fireballs. A high energy collision is assumed to proceed via two distinct mechanisms,
fragmentation and pionization. The pionization component coincides roughly with the usual
statistical bootstrap ideas but fragmentation is handled separately. Specifically, Jabs assumes that
the fireballs carrying the quantum numbers of the leading particles have quite different properties
than those produced in the pionization region.

The contributions of the fragmentation fireballs to the inclusive cross section in this model is

max

Ed30 ij pT
. « Mg pr v W(YE) dyg exp [— P 7F] ; (3.2.10)
d&*p |Frac 1 KTy
where v is the Lorentz factor given approximately by
s—F
Tr = (———\/‘: """ - ) , (3.2.11)
M min@1)

where E is the amount of C.M. energy going into pionization and w(yy) is a normalized distribu-
tion of fireballs. By taking these fireballs to occasionally be very massive and hence slow in the
C.M. system and assuming they decay statistically with a temperature T = 2T, the single particle
inclusive data can be roughly understood.

While there can be no fundamental objection to the ad hoc introduction of a new temperature
or mass scale it is not inherently satisfying. A simplifying assumption used by Jabs is that the fire-
balls are produced strictly along the collision axis; without further clarification of how reasonable
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this assumption is, the understanding of the production is incomplete.

Pokorski and van Hove [195] have a similar view of the origin of high p, particles. They point
out that if the leading fireball is assumed to be produced diffractively in the spirit of the diffrac-
tive dissociation model (Hwa and Lam [149]) or the nova model (Jacob and Slansky [155]),
then the low masses of diffractive fireballs and the competition of different channels combine to
keep transverse momenta of decay products low. At NAL or ISR, however, the production of
heavy fireballs can lead to large transverse momenta.

In a separate paper Pokorski and van Hove [196] also make an interesting connection between
fireball models and quark parton models. They note that the average fraction of C.M. energy
carried off by protons in proton—proton inelastic collisions is near one-half. Also, the average
fraction of the proton’s momentum carried by quarks as deduced from analysis of lepton—proton
inelastic scattering is close to a half. This suggests that the fragmentation fireball can be con-
sidered to carry the quantum numbers and approximately the same C.M. energy as the initial
quarks. The assignment of a large mass to this fireball can then be considered roughly equivalent
to giving the valence quarks a large relative momentum and the “decay” of a large mass fireball
to produce high transverse momentum hadrons can have the same underlying dynamics as the
quark—parton model. In the synthesis of Pokorski and van Hove it is unspecified at what level
the underlying fundamental constituents become the important dynamical entities instead of the
fireball. More explicit calculations are needed. One thing which is clear is that it is over-simplify-
ing things to consider only fireballs which themselves have no transverse momentum.

An interesting calculation in the context of statistical models has been performed by Bouquet,
Letessier and Tounsi [54]. The heavy clusters which are formed are assumed to decay in a sequen-
tial cascade mechanism. This would lead to the Boltzmann distribution eq. (3.2.7) for the trans-
verse momentum of the decay products if the recoil momentum of the heavy cluster is neglected.
They then observe that the buildup of successive recoils to produce a large momentum is statis-
tically unlikely but not so unlikely as to be unable to produce the observed yield of high trans-
verse momentum hadrons. Detailed numerical calculations described in their paper yield the
curve shown in fig. 3.2.3. The calculations are complicated enough that it is difficult to abstract
any features of the data which will conclusively support their contention. It remains an interest-
ing piece of work which shows that it can be dangerous to use statistical arguments when the
number of particles in the decay mode is still relative small.

One modification of the statistical model which has not received much attention is the possibil-
ity that high mass fireballs have a small “fission” decay mode where they decay into two approxi-
mately equal mass objects as well as the usual cascade decay mode. A reasonable branching frac-
tion into a fission mode can result in substantial large p; inclusive cross sections. Of course, this
decay mode could also give jet-like structure to the population of hadrons in the final state.
Detailed calculations on this approach have not been made although the formalism is available
(Barnett and Silverman {26]).

A distinct version of the fireball model is advocated by Berger and Branson [27]. In their ap-
proach low mass fireballs are produced at large 6 through a hard scattering mediated by the
current—current interaction of Berman and Jacob [29]. The invariant cross section for the pro-
duction of these baryonic clusters in fig. 3.2.4 is given by

E_ do 2 w,w
— = £ F(w) F(w,) ( SR At ek )+ [cos § <> —cos 8], (3.2.12)
dm?d’p, ™S Pw,w, 2
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Fig. 3.2.3. Transverse momentum distribution in the fireball model of Bouquet, Letessier and Tounsi [54].

Fig. 3.2.4. The low mass fireball model of Berger and Branson [27].

where F, is the usual dimensionless scaling function vW, and

il

w, = s 0mi+p?)® — 2md — (s~ 4m2)"p coso]

(3.2.13)

11

-l [s—s"2(m2+p?)V? — ng — (s —4mg)“2p cosf] .

W,y 7

The cross section (3.2.12) when integrated over all finite region of phase gives a contribution to
the total inelastic cross section which rises linearly with s. Because of the magnitude of the large
pr cross section this rise is not a problem at current energies but there must be some sort of
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mechanism, possibly a natural cutoff, which removes this linear divergence.

Because the fireballs in Berger and Branson’s calculation have baryon number one and a small
mass, they predict the proton/pion ratio to be quite large. A value of 5 for this ratio is cited in
their paper but the actual value is sensitive to the input mass spectrum for the fireballs. However,
the observed value p/m ~ 1 at p; = 3 GeV/c (see figs. 2.2.5 and 2.2.6) is uncomfortably small for
a model with light baryonic fireballs.

An approach related to fireball models which attempts to incorporate an idea of the space-time
structure of a collision is the “hydrodynamical’” model originally proposed by Landau [168]. The
picture is that some portion of the hadronic matter goes to form a massive fireball localized in
some volume characteristic of the incident energy. One idea of the time evolution of this fireball
is that it expands adiabatically for some period during which the behavior of the hadronic matter
is governed by the classical dynamics of a perfect fluid. The expansion continues as the system
*““cools” until a temperature of order m_ is achieved and the system condenses into pions and
other hadrons.

In a detailed study of the hydrodynamic equations done by Carruthers and Duong-Van [74],
approximate solutions for the particle distribution due to condensation suggests a gaussian depen-
dence on rapidity. In the longitudinal rapidity y, = 3In{(E +p)/(E — p.)}

Ed3o

« exp (—y2/R?), (3.2.14)
d3p
the width, R, is approximately related to the Lorentz contraction
R, =31n(s/sy) . (3.2.15)

From symmetry arguments, Carruthers and Duong-Van suggest that the 90° inclusive cross section
should also be given by a gaussian in transverse rapidity, y; = 3 In {(E+p)/(E — p1)}

Ed3o
&*p [yp=0

« exp (—y3/R%), (3.2.16)

where the width is now approximately independent of incident energy. The data is roughly consis-
tent with this gaussian form over many orders of magnitude although it is hard to understand the
s-dependence of the high p cross section unless correction terms derived from beam fragmenta-
tion are important. One interesting suggestion is to take the hydrodynamical model for the depen-
dence of the hadron irreducible interaction in a hard scattering picture for the interaction like
that described by the graph shown on fig. 1.5.

A suggestion due to Dumont and Heiko [103] and Heiko [145] is that although the bulk of
particles can appear only at the condensation stage, some particles may escape from the hadronic
matter at any time and will have a momentum reflecting the “temperature’ at that time. They
divide, rather arbitrarily, the progression of the fireball into the formulation or initial stage, the
expansion stage, and the condensation stage. For particles escaping from the initial fireball they
expect a distribution in p; approximately given by

Ed3c
d3p init

= Axy exp (—Bp/s'?), (3.2.17)

which can be understood in terms of the original Fermi statistical model [118a] where the highest
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[103] for the inclusive p distribution. in the bootstrap model of Harte.

temperature achieved is proportional to s'/4. For particles escaping during the expansion stage
they propose an empirical form

Ed30

d3p exp
so that the effective temperature interpolates the initial temperature and the breakup temperature
T = m,. The small p; data is then fit by the usual Hagedorn spectrum (3.2.7).

With the fair number of parameters displayed in the model they can achieve a reasonable fit to
the inclusive cross section. A typical fit and the values of the parameters are shown in fig. 3.2.5.
The global display of the data given by Cronin, fig. 2.2.7, does not favor such an arbitrary division
but the essence of the idea is that there is a continuum of temperatures between T = Bs'/* and
T = m,, which are important, and this would not argue for the existence of breaks. Meng Ta-Chung
[185] has proposed an alternate form where the temperature is proportional to s*/®.

An alternate hadronic model which should stand separately from fireball models is the so-called
asymptotic bootstrap model of Harte [142,143]. This model assumes that hadrons are infinitely
composite in the sense that there are no poles in the irreducible kernel of a Bethe--Salpeter-type
integral equation which represents unitarity. Self-consistency arguments are then used to derive
the asymptotic behavior of vertex functions when one or more momentum transfers is large.

The model has predictions for electroproduction not too dissimilar from present data. In con-

= Cpy exp{—p/(D+Es"H}, (3.2.18)
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trast, it predicts that the cross section 0, _,, falls faster than 1/Q%. The predictions we want to
mention here start with the predicted behavior of electromagnetic form factors

F(0)~ exp {—af(m? m?) (—nD"*}, (3.2.19)

(see also Stack [218]). This is in good agreement with the data. The fixed angle behavior of
exclusive amplitudes in this model is also expected to fall exponentially with (—¢)!/4. The in-
clusive production of hadrons at large p; in this model come from graphs such as that shown in
fig. 3.2.6 where the heavy line is a p? =0 propagator. In diagram a of this figure the maximum
contribution comes from ¢ near ¢, and leads to an inclusive cross section behaving asymptotically
as

Ed3g
d3p

o f(s,x1) exp (—cepy?), (3.2.20)

where ¢ is a universal constant and f is slowly varying. A comparison of this single contribution
with data on pp - #° from the CCR group is shown in fig. 3.2.7. The other diagrams have not
been computed.

None of the models discussed here can be considered completely successful in the sense that
the large inclusive cross sections for high p; hadrons are a natural expectation. Several models
cannot be ruled out with existing data but these cannot be considered attractive because they
contain ad hoc features. One important constraint is that the models make interesting nontrivial
predictions for two-body inclusives, multiplicity correlations, etc. which can be compared to new
data. An important consequence of the work of Pokorski and van Hove is that it may be possible
to make a synthesis of fireball and quark—parton models which allows all kinematic ranges to be
dealt with on a uniform basis. This exciting possibility deserves careful exploration.
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4. Hard scattering models
4.1. Introduction

Hadronic reactions involving the production of particles at large transverse momentum possess
the exciting possibility of directly reflecting the underlying structure of hadrons and the interac-
tion of their possible constituents at very short distances. Although the underlying dynamics are
certainly more complex than the simple parton model description of deep-inelastic lepton—hadron
scattering, an important first question is whether one can adequately describe the behavior of
large p4 reactions in terms of a few simple but general constituent scattering mechanisms, and
whether the quark model does in fact determine the essential degrees of freedom of hadronic
matter at short distances.

In the following, we shall attempt to describe the simplest approaches to this objective in the
class of hard scattering models. The rules of dimensional counting will be discussed and then
applied to a more definite constituent model of the hadrons to discuss exclusive and inclusive
reactions. A similar type of theory using the eikonalization properties of softened vector meson
theories will be discussed also, and the possible connection with constituent theories will be ela-
borated upon.

4.2. Counting laws for large py reactions

As we have emphasized, the inclusive cross section for A + B~ C + X in any hard scattering
model is given simply by the sum of cross sections for each contributing subprocessa +b > c+d
at large py weighted by the fractional momentum fragmentation probabilities G, ,, G}, and G .
Since the fragmentation probabilities are scale-invariant, the large p; scaling behavior of
Edo/d%p (A + B - C+ X) reflects the scaling behavior of the subprocess cross section
do/df' (a+ b - ¢ + d). Depending on the model, the interacting particles a, b, ¢, d can each be
hadrons, quarks, or diquarks. In order to compute the contribution of each type of subprocess we
can use the dimensional counting rules which are based on an underlying scale-invariant theory.
The counting rules for elastic scattering and form factors were derived independently by Brodsky
and Farrar [62] using renormalizable field theory methods and by Matveev, Muradyan and
Tavkhelidze [183] using the ansatz of scale-invariance or “automodality” of the quark scattering
amplitudes. Some applications to the p power of inclusive reactions were also discussed by
Brodsky and Farrar [62]. A complete discussion of the generalized structure functions and the
threshold behavior of inclusive reactions was given by Blankenbecler and Brodsky [40]. Some of
these results were obtained by different methods by Gunion [134]. The rules are as follows: First,
one counts the minimum number of “active” elementary fields participating in the large p; process

nactive =”a+nb+nc+nd’ (421)

and the minimum number of spectators (noninteracting fragments) or “passive” fields in A, B,
and C:

n = n(aA) + n(bB) + n(Ce) . (4.2.2)

passive
Then following the quide of simple Born graphs in renormalizable field theories one can derive the
following result for each contributing subprocess:
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Edo 1 1
£do pB- X)) = FOery € ~ — FOer) €F 4.2.3)
p e oD o (R
for e = M ?/s fixed, where
N=nyp. -2, (4.2.4)
and
F=2n —1. 4.2.5)

passive
It is physically clear that N should increase as the number of fields forced to change direction
increases, and that F (the degree of “forbiddenness’) should increase as increasing numbers of
spectators take away the available phase space. The reader can readily check that the usual scale-
invariant parton predictions for deep inelastic lepton scattering or Compton scattering are in-

cluded as special cases of the above rules. For ep - eX, 7,.y;,. = 4 (for eq > eq) and nlagionic = 2

giving vW,(x) ~ (1—x)? for x > 1. For scattering on antiquarks (or strange or charmed quarks) in

the proton, 7., = 4 and vW,z, ~ (1—x)7. This last result has been used by Gunion [134] and

Farrar [117] as a simple parametrization of the nucleon’s antiquark distribution. Notice for

pp —> uX, the Drell-Yan mechanism (qq - u*u~) predicts N = 2, and F = 11 (for 6 spectators).
More generally, the spectator rule gives for x - 1

Gya ()~ (1—x)*"1, n = n(aA) (4.2.6)

for the fractional longitudinal momentum distribution of (off-shell) hadron A in hadron B. Some
examples are G5/, ~ (1-x), G, ~ (1 —x)5, Ggip ™ (1—x)", etc. One can also use this result to
predict decay distributions (see section 5.5) and the diffractive dissociation contributions to in-
clusive reactions A + B - C + X in the triple®Regge region. Writing

Edo _ (1—yyt-2acs(0) | (4.2.7)
d3p
one obtains a ;¢ = 1 — n(@A) if a = C. Generally, there are also contributions from two step
processes which give

a,4(0) = &(0) — n(@A),

where a(0) is the trajectory for the process a + B - C + anything. For the case of electromagnetic
couplings, e.g., leptons or quarks to a photon, there are corresponding equivalent photon or equi-
valent lepton distributions as discussed by Chen and Zerwas [77]. For these processes the specta-
tor rule (4.2.5) is generalized to (Blankenbecler et al. [44])

F= 2nhadronic +pem ] , (428)

passive passive

where n . is the number of spectator quarks or leptons coupling to a photon. Note that

photons are not counted in the spectator rule, although extra factors of log s arise.

4.2.1. Exclusive processes

The general result (4.2.3) can also be applied to exclusive two body PrOCesses, M, e = 0, to yield
do 1
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which, for eh - eh gives the result
Fy ()~ '™, (4.2.10)

for the asymptotic behavior of spin-averaged form factors. For multiparticle exclusive processes
the prediction is

Ao ~ s71"NM—2NB (4.2.11)

where Ao is the cross section integrated over some fixed region of many body invariant phase
space such that all two-particle invariants are large. In (4.2.11) N, is the number of meson (qq)
states and NV, the number of baryons (qqq). For example, this result makes predictions for specific
exclusive channels in pp or e*e~ annihilation. The region of phase space considered must be
chosen to be outside of possible prominent resonance contributions.

The prediction (4.2.9) is compared with pp elastic scattering data in fig. 4.2.1 and with 7p and
Kp in fig. 4.2.2. The predictions for form factors are discussed in section 4.3. Other comparisons,
including photoproduction, are discussed by Brodsky and Farrar {62, 63].

The dimensional counting rules are derived assuming that the composite systems have zero
internal orbital angular momentum. Brodsky and Farrar [63] present arguments which indicate
higher orbital states can be dealt with by assuming that they contain extra elementary vector
fields. It is also possible that there exist suppressions of various contributions from a more careful
treatment of quantum numbers than is possible from just counting constituents. For example, the
p—A electromagnetic transition may be suppressed due to the isotopic spin structure of the wave
functions. This possibility is discussed in more detail by Scott [214] and Gunion [134—136].
Although not conclusive, the predictions using quark counting are sufficiently consistent with
experiment that it becomes an important question to understand the theoretical conditions for
their validity. This is done in some detail for the form factors in the following section, where it is
found that up to finite powers of log ¢ the result (4.2.9) is the canonical expectation for general
classes of scale-invariant theories, and can be proved rigorously in certain field theories. The validity

PP—-pPP pp -»pp
10" F— 10 =~
N TN e ‘.
P ,a* 8-9 Gev/c Y NN A P
13 ¢ LAB 5 . % " . . .
ol S 10-12 e 0 Wt e T el T Pone
» e %% " Sl <, * a8 Gev/c
H 1 14-17 : 3 04 I T TP
=, IO ‘5" |9_2| x E é l. ’* ., . . : .l . (0.8 .
3 Y 24 ' 3 .5 Vo 154 e w Tt e d
S 10"k % 4 B 0% . © ezis
= LN . .,
° Y, 0!: . l' 192 . 14.25 o
“ 109k .'rh 1 8§ I0°F ' oa. tee ., .. l69 3
s MATH _ .
10° b M, i 07 | Loxes 1
3 i o213
i P G S S S S Y PREEPU W S A 'o‘e T T SR U S S T VA (N S T S S | P
1.00 0.75 0.50 0.25 (o} 1.00 0.75 0.50 0.25 o]
cos 8 cosé

Fig. 4.2.1. 5% do/d¢ (pp — pp) and do/d? (pp — pp) plotted against cos 6.



D. Sivers et al., Large transverse momentum processes

1 S — N
f TPp—-7p 1
10 ! ! 1
L
10°} f’fk’!j&z‘ , 1
10° AR
108 pr—————————————
5 107[ ",. TP=TP 1
ERA .
S Pos
v 107§ .! ws: ; <
104'r ".00 1
106 F— Y — T -
, Tp—-7°n
»
105; f’.:nq. 9}1{4 E
fey i
104E 1 t} ' 4
: Ut
103
1.0 0.5 0] -0.5 —=170
cos O
108 I
E 1
106_[- .':.. 1
! TV
r *” !
104F t 1
F b bopt s
> <
© —rT T T - -8
%0 109} K*'p=K*p :
1 1
10’ [H1\§@ 1
r )
16° t
1% ﬂmw- !
1.0 -0.5 -1.0

cos @

Fig. 4.2.2. s do/dt and do/dt for n°p —» «™p, a*p —>a*p, a7p > °n, K

that s8 de/dt should be independent of energy for all these reactions.

0 Ty
-3 !* LAB
10 4l' } '}j 4, “!
- ¢ had; . *
1075 f. iy 1 59 1
- e
10 5[ W , ,‘;’;* $ g'a, §
-6 14, +
10 ¢ { T ?22. '
1072
qﬂ a.
10-3} 1
10_4[ f{ { lnl. ]
fs. 4
10-5F 1
10'1 A T T A T
1072f ~ 1
N o 4,
1073 " ‘W’HM.: 0#5. 1
+
_4 § “* "”
107 Jf I’fmtf }*Hs. ’
10_5 — 1 {L N .
1.0 0.5 0 -0.5 -1.0
cos O
100 T T T v
E— ‘l.u. i
10‘2;@; : 1
'05 i 3
] 4’ 5.9 ‘"’1 1
- . th
1074 } !
L AT ST U R
10° ¥ ,
 § ‘,
-2 Ft %
10 irf,’ ”H 4. ; 1
a 6. }
1 " *g 1
104 F ' ! ’f”l] H 1
|3 IV B S W SN S S Y "
1.0 0.5 0 -0.5 -1.0
cos 0

61

“p — K™p, K*p - K*p. The counting rules (4.2.9) suggest
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of the rules for hard processes in field theories of composite hadrons is also discussed there.

If we apply the dlmensmnal counting rules for inclusive hadronic interactions, then the quark
model predicts a sum of terms in eq. (4.2.3) with n, . =4, 6, 8 ... as more and more constituents
participate in the large p, subprocess. The fact that a scale invariant term, p;“, is not observed
could be due to any number of possible reason:

(a) The gluon coupling strength could be very weak — at least at short distances. Of course, at
order a?, electromagnetic and/or weak contributions to quark—quark scattering are expected, but
such contributions should not be important until p; > 25 GeV (Berman, Bjorken and Kogut [28]).

(b) The p7? term could be suppressed via the quasi-exclusive nature of pp » 7X, but still be
present in the measurement of “jet” production pp = J + X, where the jet is defined as a group of
hadrons with pi' = =, pi. the total transverse momentum measured on one side (Ellis [107]).
Accordingly, calorlmeter-type measurements will be very interesting. The idea that the cross
section is suppressed if a large fraction of the momentum of a scattered parton needs to be trans-
terred to a single hadron is in apparent conflict with the simple Drell—Yan scaling predictions for
semi-inclusive deep inelastic scattering processes ep -~ ¢hX. However, in the case of asymptotic
freedom theories at very large momentum transfers, the predicted deviation from scalmg and
suppression of the three structure functions Gy Gyype GC/q (each required with x = }) could be
sufficient to diminish the importance of the qq - qq term (Cahalan et al. [68]). Measurements of
ep » X and up » #X might help to clarify the situation. The conventional parton prediction has
a scale-invariant contribution from £q - £2q (if the lepton balances the pion momentum) and a
contnbutlon pT" (log(s/m2)) from yq - wq (if a hadron balances the pion momentum). If

q/n ~ (1 -x), then the py 4 coefficient should have €3 behavior for small e.

(c) The process q + q = q + q may be suppressed when the quarks are effectively near their mass
shells due to exponentiation of infrared factors; in the Fried and Gaisser [125] model p1* behavior
is expected only for very small x (see section 2). As pointed out by Polkinghorne [198], and by
Appelquist and Poggio [15], one could still retain scale-invariance of the qq » qq interaction in

the “light cone” region where all quark legs are off-shell, and thus preserve the dimensional count-
ing rules for exclusive processes.

(d) In the massive quark model of Preparata [ 199, 200], scale-invariance only occurs in the case
of double-fireball production qq - FF. This is suppressed by the q distribution in the nucleon,

G-, ~ (1—x), as well as by a possible large mass scale. Similarly qq - qq may be suppressed rela-
tlve to qq » qq if one uses duality as a guide. The latter gives a contribution of order py ~4¢13 for
pp = wX, since 1, = 7. Such a term could well be hidden by the CIM contributions at NAL
and ISR energies. Furthermore, the Landshoff {170] contributions to exclusive scattering are
absent, except for pp scattering.

(e) Another possibility, suggested by Gunion [134—136], is that the coherent sum of a/l gluon
exchange contributions generates the Pomeron contribution to qq = qq. Single gluon exchange
would thus be suppressed at high p.

In the constituent interchange model, an explicit quark--quark interaction is never introduced.
This idea was originally motivated by the fact that the observed angular dependence
fa+p -cin(Bcn) for exclusive processes can be rather simply explained in terms of quark-exchange
diagrams. Quark-interchange is analogous to rearrangement collisions in atomic and molecular
physics. This also seems to be a natural way for hadrons to scatter in the ““bag” models. In any
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event, the quark—hadron amplitude must exist just by the existence of the hadronic wave function.
A review of the applications of the CIM to effective trajectories and 6,, dependence in the inter-
change model may be found in section 5.

The leading processes for pp - X" in the CIM derive from quark—hadron interactions. The
minimum (n,.;,. = 6) terms correspond toq + M > q+ M and q + q > B + q or their crossing
variants. An excellent fit to the CCR—ISR data for pp > #°X™ (but not the NAL data) can be
obtained from eq. (4.2.6) with G, ~ (1-x)%, G, ~ (1—x)3 giving Edo/d>p ~ (p3 + M*) ™ €®
since np,.ive = 5. Similar fits have been given by Ellis [107,108] and by Barnett and Silverman
[26]. The relative importance of the two » = 6 contributions can be settled by measurements
of quantum-number correlations.

However, for the Chicago—Princeton—NAL data, which involves x > 0.4, a ~ p;“ scaling law
is observed. This data, which is closer to the exclusive limit, indicates that other terms involving
a larger number of active particles must be involved as € becomes smaller. This is perhaps not
unnatural: in general, as one approaches the exclusive limit, € » 0, we can expect that more active
quarks are required in order to produce a hadron with a sizable share of the available center-of-
mass energy. In the CIM, the terms which contribute to pp > X with #n,,,;,. = 8 and minimal
Npassive (= 3) derive from the subprocesses q + (qq) - B*+nmorp+q—-B"+q (> q+w)and give
p7'2€’. This suggests fits to the data of the form

active

Edo_ A o, 4 s (4.2.12)
dp  (PR+md)*  (pi+md)S

The fits are quite good and even are consistent with data at BNL energies. For the ISR data the
p1'? term is negligible; the p1® and p1'? are of comparable importance in the NAL-range, with
the p1'? term dominant at large p, due to its slower falloff in . Further details on these predic-
tions and fits are discussed in section 5. It is interesting to note that p5'? contribution derives
from subprocesses in which a baryonic system balances the large transverse momentum of the
detected pion. For any subprocess, however, one expects resonance contributions (i.e., clusters)
and a single particle in the recoil system is not likely. The effect of two contributions in '

E do/d3p implies that the effective power p1 " will vary from 8 to 12 as p increases across the
NAL range, but remains close to 8 for the ISR data. However, at small p; <2 GeV the effective
value of n will drop due to the mass terms and also the nonasymptotic behavior of the effective
trajectory a(t). This last effect corresponds to the Reggeization due to the emission and absorp-
tion of hadronic bremsstrahlung softens the falloff of the subprocess in ¢.

Clearly there are a myriad number of contributions from subprocesses in which more and more
constituents participate in the large p; subprocesses. In order to make a simple classification, we
can utilize the correspondence principle of Bjorken and Kogut [36] which assures a smooth con-
nection between the form of the inclusive cross section for e =M ?/s > 0 and a corresponding
exclusive cross section. This is a generalization of Bloom-—Gilman [48] duality which has been
proposed for deep inelastic lepton scattering. Thus if a contribution to the inclusive cross section
for A+ B - C+ X at fixed 6, is to join smoothly for € » O to an exclusive cross section for

A+ B - C+ B, we have
P o | 1 4.2.13)
do _ m incl =
dam? (A+B->C+X)= dam? = - _ €F fincl(g )= —— e @) .
f dtdcmz f s (p%.)N CM SPexcl fA+B C+D CM
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We thus have (62,114]

N+F+1=N+2n FPexea = Hatngtnetng—2, (4.2.14)

passive
and the identification
fincl(BCM) — fA+BﬁC+D(0CM) Sinz(QCM)N . (4215)

Thus, generally speaking, for large p; and small €, one would expect contributions from those
allowed subprocesses (a + b~ ¢ + d) which correspond to the minimum number of hadrons in the
related exclusive channel to dominate. Note further that all of the contributions which yield the
same p,, ., i.€., are dual to the same exclusive channel, may be summed in the form

22 2 \FHi
do_ 1 _r [1 +0 (_]‘_4—) +..40 (i”«) }fﬂncl(ew) , (4.2.16)
d*p/E (p2V pie pre

where the first term dominates for p e > M?, and where the subsequent terms correspond to allow-
ing additional passive spectator quarks to become active participants in the large momentum trans-
fer reaction. The last term gives the exclusive channel contribution. Note that the corrections to
the leading term are of the same form as that obtained by expanding (p2)" e~'(€)**' where
€?=¢e*+ O(M"/pf‘r). This is analogous to the corrections to scaling introduced by the Bloom—
Gilman variable w = —(p - ¢ + M?)/¢* in the analysis of deep inelastic scattering. Note that the w'
correction terms for ep - eX automatically includes the nonscaling contribution from the sub-
process e(qq) = e(qq). _

Thus the leading contributions in the CIM can be classified according to their dual exclusive
channel (which determines N + F) and the distribution of active and passive quarks. To obtain the
CIM candidates we only need to exclude the basic subprocesses qq - qq and q(qq) = q(qq). A list
of various contribution subprocesses for the inclusive processes involving meson and baryons,
using meson and baryon or electromagnetic beams is discussed by Blankenbecler and Brodsky
[40] and Gunion [134-136].

The scaling laws (4.2.3) naturally take into account the underlying scale invariance at the con-
stituent level, and correlate dynamical measurements with the degrees of freedom of the hadron
in the simplest possible way. The rules also lead to simple asymptotic predictions for Regge trajec-
tories and residue functions. These are reviewed in section 5. We also emphasize the importance of
crossing behavior in models of large p; reactions. The CIM combined with the rules (4.2.3) give
the simplest possible realization of a theory with correct crossing behavior; the exclusive-inclusive
connection, and a natural continuity with the Regge region for exclusive and inclusive reactions.
These results are developed and reviewed in section 5.4.

4.3. Theories of the elastic form factor

The asymptotic dependence of the elastic form factors of hadrons plays a critical role in
theories of large-angle scattering. Physically, the elastic form factor is the probability amplitude
for a hadron to remain a single hadron after the transfer of momentum. Thus, in the model of Wu
and Yang [227] (large ¢ gluon exchange) or the CIM (large 7 quark interchange), the falloff of the
exclusive scattering amplitude at large momentum transfer is controlied by the same physics that
controls the falloff of the form factors. Many models, in fact, satisfy a relation conjectured by
Theis {222] for the spin-averaged amplitude
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Mpg.cpls, 1) ~ s~ PAPBIPCPDI £ (1]5) | (4.3.1)

fors - =, fixed t/s, where F,(¢) ~ tPA etc. for the spin-averaged form factor. This result has been

recently proven by Creutz and Wang [91] in elementary pseudoscalar field theory, and also holds
in the CIM with dimensional counting (neglecting logarithmic modifications), the automodality
model, and the eikonal model of Fried et al. [127-130].

It is well known that the proton form factors are quite adequately described by the dipole
form G (¢) = u(1—1/0.71 GeV?)~2 and the scaling law G (¢) = uGg(¢). A graph of 1* G§FP(¢)
(fig. 4.3.1) shows that the asymptotic dependence of =2 is consistent with the data. The pion
form factor is less well known experimentally, but both spacelike (from ep - exp) and timelike
data (from e*e™ - 7*7™) are consistent with a falloff £, (¢) ~ ="' or slightly faster. A plot of
F,(¢) is shown in fig. 4.3.2. A very important result, obtained by Bonneau et al. [50] using a
rigorous analysis of the data, shows that if the asymptotic falloff of /(1) ~ 7" on the average
for |t]| > 2 GeV?, then n < 1.2 + 0.3. Thus the pion form factor cannot fall faster asymptotically
on the average than =%%. On the other hand if asymptotia begins at much larger | /1, say
[t] > 9 GeV?, then the bound is much less restrictive (Pham and Wright [194]).

The central theoretical question is thus the origin of the asymptotic behavior of the form factors.
It is clear that one cannot give an a priori answer to this question without exact knowledge of the
short distance structure of the hadrons. In the following we shall outline some of the main
theoretical approaches to this question. An extensive Physics Report review has recently been
given by Gourdin [132]. (For other reviews, see also Appelquist and Primack [16] and Brodsky
and Farrar [62].)

There are three basic views of the short-distance structure of the hadrons which can be distin-
guished. (1) The constituent models — based typically on internal quark degrees of freedom;
(2) models based on elementary field theories; and (3) infinitely composite systems — the hadronic
bootstrap. In the following we will discuss in some detail the composite models and the connection
to large transverse momentum phenomena.
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Fig. 4.3.1. Plot of tzGM(t) versus t where G(¢) is the experimental magnetic nuclear form factor.
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4.3.1. Constituent models and dimensional counting

The quark-constituent approach has the important virtue of connecting naturally with SU(3)
or SU(6) spectroscopy, current algebra, and the quark—parton phenomenology of deep inelastic
lepton scattering processes. We can make the following assumptions:

(a) The prominent mesons and baryons are £ =0 Bethe—Salpeter bound states of two and three
quark fields respectively. Thus in the limit of zero binding, the hadrons would become free quark
states:

IBY->1qqq), IM)~ |qq) .

The higher particle number components can be shown to produce nonleading terms to the scaling
law at large momentum transfer. Also, as we discuss below, we assume a simple physical limit on
the high energy momentum components in the wave function which ensures the finiteness of the
wave function in coordinate space.

(b) The interaction of the hadron constituents are asymptotically scale invariant, as implied by
Bjorken scaling.

With these assumptions we can derive the dimensional counting and automodality prediction
(modulo powers of log ¢)

Fy()~ (17, [ too 4.3.2)

for the asymptotic dependence of the spin-averaged form factor of a hadron H containing n
elementary fields. This constituent-counting rule thus predicts Flp(t) ~t7? and Fo~— t~! consist-
ing with the data, and naturally accounts for the faster falloff of the baryon wavefunction relative
to that of the mesons. Physically, the rule allows a factor of ~! for each additional quark line
which changes direction from along p to along p + ¢. The scale invariant assumption (b) requires
the quark form factor itself to be pointlike — consistent with Bjorken scaling, and leads to domi-
nance of spin nonflip amplitudes, i.e.: the dominance of the Dirac form factor sz/Flp - 0, and
Gp(t)~ Gy (1)

A simple illustration of how the dimensional counting rule arises in the Bethe--Salpeter compu-
tation of the meson form factor is illustrated in fig. 4.3.3. If we assume a falloff of the Bethe—
Salpeter wavefunction at large relative momentum, corresponding to a wavefunction which is
finite at the origin in coordinate space, then the leading contribution to the asymptotic form
factor comes from iterating the Bethe—Salpeter kernel wherever large relative momentum is
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Fig. 4.3.3. Bethe—Salpeter computation of the meson form factor.

required, as indicated in the diagram. Thus one obtains for large ¢°
id%k id*7 ¢ u
Q) J oy Vo T .
where M * is the connected amplitude for the photon coupling to the quark and antiquark with
momenta k* and (p— k) to [* and (p + g —[)*. The integrations are limited to the dominant
region of each wavefunction: k=xp +k, [=y(p+¢)+ k', withk -p=«'-(p+¢q) =0, and

k'? ~ k2~ O(m?). Thus M * represents the scattering of photon on the quark constituents, each
of which has a finite fraction of the hadron momenta: p, ~ x; p, Z x; = 1. It is exactly the con-
nected amplitude which occurs when hadronic binding is turned off adiabatically, in which case
x; > m;[My. In the case of spin, M * is defined to include the on-shell spinor factors.

A simple computation then gives F,(#) ~ ¢! log ¢ (where the logarithm arises from the x ~ 1
integration) since we have assumed a scale invariant kernel. The inverse factor of +~! comes from
the oft-shell quark propagation. For an n-body state, n —1 quark lines are off-shell, giving the
result (4.3.2). Notice that the minimum field description gives the leading asymptotic behavior.

We can also see how these results follow from simple dimensional analysis. After iteration of
the interaction kernel, we are dealing with the scattering of a lepton on »n,; near-mass-shell quarks
each sharing a finite fraction of the momentum of the initial and final hadron. This amplitude
which has n = 2ny + 2 external legs and dimensions [length]® %, then must scale as [+/¢]%" at
fixed angle (¢/s fixed, |¢| - o) if the internal interactions are scale-free and the coupling constants
are dimensionless. This then gives the scaling (4.3.2) for form factor.

The finiteness of the Bethe--Salpeter wavefunction is crucial for the above derivation. The
coefficient of the asymptotic power dependence and mass scale of the meson form factor is set by
the value of

Qo+ Fu@)~ [

d%k
2m)?

which we require to be finite. This requires, at minimum, that ¥, (k) converges in the ultraviolet
faster than k~*log~!~€k?, with e > 0.

There are a number of arguments which imply that t[/p(x) is in fact regular at x, ~ 0. A quite
general proof by Ezawa and Nishijima [115] shows that the existence of a composite field opera-
tor for a meson and the assumption that it lies on a Regge trajectory requires wp(O) < oo, Similarly,
computations of weak and electromagnetic decays in current algebra are based on the finiteness
of the wavefunction at the origin. These arguments, however, do not give an insight into how this
result can arise dynamically.

Important progress has been made on the dynamical requirements of the wavefunction condi-

Volx,=0) = [ y k), (4.3.4)
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tion by Appelquist and Poggio [15]. They show that for the case of asymptotic freedom theories
without infrared complications, the asymptotic ultraviolet behavior of the full Bethe—Salpeter
kernel (including the self energy insertions on the incoming legs) is exactly one logarithm more
convergent at large relative momentum than indicated by ladder approximation (scale invariance).
They can then show that the Bethe—Salpeter wavefunction is finite at the origin up to a calculable
logarithm, [log(x)]9, where d depends on the coupling constant. Assuming that the wavefunction
has no anomalous behavior when one quark leg goes on the mass shell (we discuss this further,
below), then one can show that F),; ~ t~! (modulo calculable logarithms).

We should emphasize here that the use of ladder approximation instead of the full Bethe—Salpeter
kernel is misleading for the determination of asymptotic behavior in renormalizable theories, although
this has been the historical approach. In ladder approximation the wavefunction has a power-
law singularity which depends on the coupling constant, which in turn must be restricted ad hoc
by hermiticity and normalization requirements. However, such behavior is unstable upon the addi-
tion of any additional contribution from the full kernel, e.g., a crossed-ladder graph, and cannot
be obtained as the smooth limit of a regulated theory (e.g., dimensional regulation or the use of a
Pauli—Villars spectrum). Furthermore, the ladder approach is inconsistent because some operators
like the electromagnetic current and energy-momentum tensor do not have the correct (canonical)
dimensions. The ladder equation difficulties are analogous to the mathematically-singular behavior
of the Dirac wavefunction for the Coulomb potential for r - 0. The physical wavefunction is in
fact regular at the origin if the finite mass or size of the source or radiative corrections are taken
into account. .

In the case of quantum electrodynamics, the full Bethe—Salpeter kernel including radiative cor-
rections undoubtedly falls faster than the simple ladder approximation, again arguing for a finite
wavefunction at the origin. The true asymptotic dependence of the QED kernel to all orders in
perturbation theory is not rigorously known, but neglecting higher order binding corrections, the
form factor of positronium is known to obey the dimensional counting rule — modulo powers of

log (¢).

4.3.2. Composite systems and renormalizable theories

An important approach to the study of the asymptotic properties of composite systems is the
investigation of those renormalizable field theories (such as asymptotic freedom theories) which
insure conformal or scale invariance at short distances. A straightforward calculational technique
is to assume that the full Bethe—Salpeter kernel has the effective scaling (g2)~¢. The scale-
invariant limit € - 0%, corresponding to a renormalizable theory, is taken at the end of the calcu-
lations. The results given by Ezawa [114], Brodsky and Farrar [62] (using the iteration method),
and Alabiso and Schierholz [4] (which include an analysis of the three particle wavefunction) are
consistent (modulo finite powers of log ¢) with dimensional counting.

A very interesting ansatz for the quark—quark interaction has been recently proposed by Ezawa
and Polkinghorne [116]. They assume that the effective Bethe—Salpeter kernel for k, + k, > k; +k,
is of the form vy, Ky* where

[ ki :ln, n>0. (4.3.5)

4.
K:..l_ n
2 = k?-&-q2

q i=1

This form is “asymptotically scale free”, i.e.: is only scale-invariant when ¢ and all the external
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masses k? are large together. This form has the following advantages:

(a) The Bethe—Salpeter wavefunction and form factors rigorously satisfy the dimensional
counting conditions without cumulative logarithmic effects for any n > 0.

(b) The Landshoff “pinch” contribution (see below) is suppressed below the interchange and
single gluon exchange contributions if » > 1/16. The fixed angle dimensional counting scaling law
then (4.2.9) holds rigorously.

(c) The p7* scale-invariant contributions to inclusive large p; hadron reactions become sup-
pressed below p3® forn > 3. :

(d) Bjorken scaling is obtained for electroproduction with large multiplicities in the photon
fragmentation region.

(e) The form (4.3.5), which suppresses the role of on-shell quarks may be relevant to the ques-
tion of quark confinement. The ultimate origin of this effective interaction remains unknown.

Recently there has been considerable progress employing the more formal tools of the operator
product expansion, the renormalization group, and dimensional regularization to analyze the
asymptotic properties of composite systems. It has been shown by Shei [215], Borenstein [51],
and Tiktopolos [223] that for various renormalizable theories, excluding vector gluon and gauge
theories, the asymptotic behavior of the on-mass-shell form factors is rigorously related to the
short-distance behavior of the theories. In particular, if the Gell-Mann—Low eigenvalue conditions
are satisfied (ultraviolet-stable fixed points) then the asymptotic behavior of the form factor has
power behavior (—g?)~ " where 7 can be related to the anomalous dimensions of the particle’s
field. A phenomenology of form factors can thus be based on these anomalous dimensions.

The intriguing question is then whether the anomalous dimension of an interpolating field for
a hadron can be related to its degree of compositeness. Let us restrict ourselves to the conformal
invariant or asymptotically free theories where the product of elementary fields at short distances
has the canonical scaling of free fields. In particular, this guarantees Bjorken scaling in deep in-
elastic scattering. The asymptotic freedom theories automatically yield Bjorken scaling modulo
logarithmic corrections since the interactions become weaker at short distances. Thus the short
distance behavior of the Bethe—Salpeter wavefunction

Wp(x) = <01 T(YGX) Y(=3x)IP), (4.3.6)

is controlled at x? - 0 by the canonical dimensions of the quark fields. This in turn determines
the scaling of the momentum space wavefunction Wy(k?, k2) in the “light-cone” limit k3 - oo,
k% - o, where the mass of both logs become asymptotic.

However, the dominant contribution to the asymptotic behavior of the form factor involves
contributions where one constituent leg is close to the mass shell. Thus we instead require the
form factor limit of ¥p(k2, k2) which is k% » e, with k2 fixed. In the case of renormalizable
scalar-constituent field theories, such as ¢ in six dimensions, and ¢* in four dimensions, Menotti
[187] has, in fact, shown that the only asymptotic scaling behavior of the complete wavefunction
which gives consistent results for both fig. 4.3.4a and the convolution of the wavefunction shown
in fig. 4.3.4b is that of uniform scaling behavior in both the light-cone and form-factor limits. Thus,
in these scalar field theories the asymptotic momentum space Bethe—Salpeter wavefunction in
both limits and the form factor of the composite system are controlled by the short-distance
scaling behavior of the product of free field. In the absence of anomalous dimensions of the con-
stituent fields one thus obtains the dimensional counting prediction (4.3.2), modulo the usual
finite power of a logarithm; this is consistent with the Appelquist—Poggio result.
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Fig. 4.3.4. Graph from Menotti showing diagrams which contribute in light cone and form factor limits.

The formal analysis of the composite particle form factor in spinor field theories is considerably
more involved, and thus far theories with vector interactions are not completely understood
because of possible infrared complications. Recent analyses have been given by Ciafaloni and
Ferrara [85] and by Callan and Gross {69]. It should be emphasized that in the case of the
spinor theories, the light-cone limit and form-factor limits of the Bethe--Salpeter wavefunc-
tion do not give the same scaling results, see Menotti [ 186—1881. The light-cone limit \Ilp(k2,k§),
k% - oo, with k3/k? finite will reflect the dimension of the constituent spinor field (and thus will
fall one power faster in k2 relative to the spinless case because the dimension of a spin ! field is
[length]~*? while the dimension of a spin O field is [length] ~!). However, as shown explicitly by
Ciafaloni and Ferrara, in a spinor theory with scalar interactions, the form factor limit is con-
trolled by the large x - p behavior of the coordinate wavefunction. This is the same asymptotic
behavior as in a renormalizable theory with spinless constituents and again the dimensional count-
ing result (4.3.2) is recovered for the meson form factor, independent of the constituent spin. The
results are, thus, as expected. The analysis of Ciafaloni and Ferrara [85] is based on explicit solu-
tions to the Dyson-type bootstrap equation for the propagator of the fundamental quark fields,
which is however, obtained by replacing the full Bethe —Salpeter kernel with an effective local
potential with an equivalent scaling behavior. Their solution requires the coupling constant and
anomalous dimensions to vanish as a dimensional regulator goes to zero. The composite particles in
this theory are effectively weakly-bound, with scale-invariant constituent interactions and thus
conform to the dimensional counting analysis.

In the recent work of Callan and Gross [69], which applies renormalization group techniques
to the analysis of the Bethe—Salpeter wavefunction, the difference between the light-cone and
form-factor limits of \If(kf,k%) can be traced to the presence of a zero-mass singularity which
arises when one fermion leg goes on-shell. These authors also show that the leading contribution
to the form factor for a meson with spin 1 constituents derives from the disconnected contribu-
tion to the vertex function rather than the connected contribution shown in fig. 4.3.5 which
arises from insertions into the cross graph kernel, etc. *

The derivation of dimensional counting which utilizes the iteration of the kernel in eq. (4.3.3)
and the wavefunction condition (4.3.4) makes it clear that the spin of the constituents is irrelevant

* Note added in proof: However as shown by Menotti [188], the fermion anomaly utilized in [69] and [85] actually cancels, and
the above arguments are not reliable. The situation has now been clarified by Polyakov [198a]. He argues that the asymptotic
behavior of the form factor is controlled by the short-distance behavior of an optimum interpolating field, rather than y itself.
Polyakov’s results (for zero anomalous dimension) agree with the dimensional counting scaling laws and are independent of the
spin of the constituents.
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Fig. 4.3.5. Leading contributions to the form factor of a meson with spin-;— constituents.

if the kernel is scale-invariant, since the connected amplitude M* always has the same dimensional
scaling. The condition (4.3.4) in the spin case actually refers to the coefficient of on-shelil spinors,
Y* 7 (x) as defined in the Salpeter formalism. The wavefunction ¥* ~(x) has similar short distance
properties and scaling as the scalar Bethe—Salpeter wavefunction (see Brodsky and Farrar [65]).

Thus we see that despite the diversity of the above methods, the physics is identical: the scaling
of the amplitudes in these theories is equivalent to that obtained in the weak binding approxima-
tion. The scattering effectively occurs on nearly free constituent particles which share a finite
fraction of the hadronic momenta.

4.3.3. Infrared effects

As we have seen a natural realization of the dimensional counting rules for the form factors of
composite systems may be the asymptotic freedom theories. However, because of the yet un-
known and perhaps critical effects of infrared behavior, a rigorous application of the asymptotic
freedom gauge theories with vector gluon or gauge interactions has yet to be given. The simplest
application of the renormalization group method to on-shell amplitudes fails due to the potential
mass-zero singularities of such theories. The most familiar example of such phenomena is the
fermion form factor in massive QED; summing leading logarithms from the infrared region in
each order of perturbation theory, one obtains (Appelquist and Primack [16], Sudakov [219],
Jackiw [152,153])

F@?) ~ exp [~ =% log (/™) 43.7)
2n?

where u? depends on the photon mass and external leg masses. One can use this form to success-
fully parametrize the hadron form factors. However, in such a model there is then no connection
with short distance behavior or evident reason for Bjorken scaling. Note that it is incorrect to use
(4.3.7) which is derived from on-shell quarks as the constituent quark form factor, which is to be
interpolated with a composite hadron “body” form factor, since the quark legs can be effectively
far-off shell inside the hadron. Thus, there is considerable uncertainty on the effects of the infra-
red region on the form factors. However, there is an optimistic point of view. As discussed by
Brodsky and Farrar [63] and by Appelquist and Poggio [15] (see also Tiktopolos [223]), the

fact that a hadron may be taken to be neutral with respect to the charges of the gauge group leads
to an explicit cancellation of the infrared divergences in perturbation theory. Further as we have
noted, the quark legs are off-the-mass shell and thus regulate the theory in the infrared so that
wavelengths larger than the size of the system are not effective. Additionally, if we take the
gluons as color octets and hadrons as color singlets, then gluon emission changes quantum num-
bers and is not soft; there is thus no reason why an eikonal-like exponentiation or serious modifi-
cation of the hadronic scaling laws should occur in such models.
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4.3.4. Quark confinement, large transverse momentum and form factors

An implicit assumption in the use of the quark—parton model is that the interactions at short
distances are unaffected by quark confinement. The usual view is that the confinement of quarks
is basically a large distance phenomenon which operates over distance scales of order 1 fm. This
assumption can be partially justified by the success of the quark—parton model in electroproduc-
tion, but since it plays such a central role in most treatments of large-transverse momentum
processes, it is important to achieve more theoretical understanding.

There have been many theoretical approaches. For example, Bjorken [33] and Coon [88] have
shown in the context of simple potential models that closely spaced bound state levels can mimic
a continuum of free states in deep inelastic scattering. The currently popular “bag” models
(Chodos et al.[79,80], Bardeen et al.[24]) represent dynamical attempts to build in the intuitive
notion that quarks can essentially be treated as free particles in their short-distance behavior while
being confined within hadronic matter. Jaffe [156] has argued that Bjorken scaling can be ob-
tained in a simplified version of the MIT bag model.

In a theory with quark confinement, the momentum space quark propagator has no physical
particle pole as is evident from the fact that in configuration space the propagator has only finite
support. Simple quark—parton diagrams are therefore strictly defined only in terms of the propaga-
tion within the space-time envelope of the hadron and the usual Feynman rules only apply for
quark lines which are far off mass shell. The massive quark model (MQM) proposed and developed
by Preparata [199,200] heroically attempts to take into account the complicated consequences
of this fact. For deep inelastic lepton scattering, the usual “handbag’ diagram is replaced in this
model by allowing for a /=1 final-state-confining interaction of the quarks. The effective quark
propagator has no pole but is peaked at small masses and falls off exponentially along the p? real
axis. Despite many complexities, the model can be shown to give parton-like behavior.

For large-angle hadron hadron scattering in the MQM the actual systems that are interchanged
always have hadronic quantum numbers. In spite of the fact that the diagrams contain an extra
internal loop the amplitudes calculated in this model have the same power law scaling behavior as
in the CIM discussed previously, and the cross sections agree with dimensional counting.

For inclusive reactions, the predictions of the MQM are again not too dissimilar from those of
the CIM. A fit to the reaction pp —» 7 + anything in the kinematic regimes of the CCR and CP
collaboration (Preparata [ 199, 200]) argues for the presence of at least two terms. In the MQM,
one of these falls as p;s and the other as p;‘o. At small x; and very high energies where qq - two
fireballs can be important (s >10* GeV?) the model also predicts a scale-invariant p3* contribution.
More details of the phenomenology of the MQM should be sought in the review of Preparata
{199, 200].

The consequences of quark confinement are not fully understood, to say nothing of the
mechanism. The intuitive feeling that large transverse momentum phenomena should be insensi-
tive to quark confinement has not been fully confirmed, especially in gauge theories with infrared
singularities. The fact that the MQM has many features in common with simple quark parton
models and the CIM in spite of vastly different mathematical formalism remains large mysterious.

Throughout the discussion we have assumed that the quark confinement mechanism does not
affect the short distance properties of the Bethe-Salpeter wavefunction nor the asymptotic form
factor.

In the MIT “Bag™ model (Chodos et al. [79]) one can expect that the form factor is controlled
asymptotically by a mechanism similar to that of the momentum partition model. After one quark
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receives the momentum transfer g, a single vector gluon exchange (possibly with a rather weak
coupling constant) is required to restore the motion of both quarks along the final direction p+4.
Thus the dimensional counting result would be obtained. Intuitively, it is expected that the bag
boundary itself would not be effective to cause the momentum transfer between quarks. On the
other hand, Shiff [209] has considered a model for a meson in which the quark and antiquark in
the rest system satisfy the free Dirac equation inside a spatial boundary. Initial and final states
are then obtained by appropriate Lorentz boosts, and it is found, surprisingly, that the form
factor falls as (¢2)~! for large momentum transfer.

In the massive quark model of Preparata, which explicitly deals with the quark confinement
problem, the meson form factor is assumed to fall asymptotically as (—¢?)~%2, which is, as we
have seen is consistent with the data. However, this result is derived by using the Drell—Yan—West
relation, and assuming (from a crossing requirement and data) that 7, (x) ~ (1-x)? for x ~ 1.
However, as emphasized by Ezawa [114], the DYW relation should be modified in the case of
spin 5 constituent Bethe—Salpeter models, and thus there is no compelling theoretical reason for
a(g?)~%? law.

In the model of Bohm and Krammer [49], quarks are always taken to have very large free mass;
thus || < 4M?. The quark—quark interaction is taken to be a four-dimensional hadronic oscilla-
tor with a 7y, ...y Dirac structure. The assumption that the form factor can be built up by reso-
nances leads to an excellent phenomenological fit to the pion form factor and the asymptotic
falloff F, (¢*) ~ —0.33 GeV?/4>.

4.3.5. Dimensional counting and large-transverse momentum exclusive processes

Most of the discussion given in this section for form factors of composite systems in renormal-
izable theories also holds for exclusive processes in the fixed 6y, limit. In general, the amplitude
for the scattering of composite particles has the form

Mpp-cp = f‘lfgs gs m, \l’gs wgs” d*k, (4.3.8)

where N, is the connected amplitude for the scattering of the n elementary active constituents.

If the Bethe—Salpeter wavefunctions are finite, the scaling of M ,, at large momentum transfer
controls the scaling behavior of M ,p_ cp. With the usual state normalization (p'|p) =2E 83 (p—p")
the amplitude 9 ,, has dimension [length]"~*. If there is no external scale and no infrared problem,
then we can write at fixed angle

W, ~ 34 (4.3.9)

The dimensional counting/automodality results (4.2.9)—(4.2.11) thus follow. Some comparisons
with experiment are presented in section 4.2.

The crucial question for the validity of the counting rules is the possible origin of infrared
effects or an external scale in M ,,. The possible corrections to (4.3.9) from anomalous dimensions
of the quark fields or the accumulation of logarithmic factors are not known, except that they
should be small in some sense if the contributions to Bjorken scaling in deep inelastic lepton
scattering are small.

The general validity of the counting rules for hadronic scattering is, however, complicated by
the possible contribution of multiple-scattering Glauber-like diagrams. The importance of these
diagrams, which in fact contain linear infrared divergences, was discussed by Landshoff [170].
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For example in pp - pp, each quark of one proton can scatter elastically and near the mass shell
on a quark of the other hadron through the same angle 6., with a finite fraction of the proton’s
momentum.

If the underlying quark—quark interaction for near on shell quarks is scale-invariant, then the
amplitude is only suppressed by a phase-space factor,

Apanp ~ (s7¥HET (4.3.10)

where L is the number of q—q scatterings. For pp scattering L =3 and the contribution of this
diagram to the differential cross section

do 1
ar . ;gf(BCM) \ (4.3.11)
which would be expected to dominate the dimensional counting, s~'°, contribution. Empirically,
this falloff is too slow. Explicit calculation of the Landshoft diagrams has been given by

Cvitanovic [95] using Feynman parameters and by Brodsky and Farrar [63] using infinite momen-
tum techniques. Appelquist, Coleman and Quinn [14] have shown that, in a renormalizable field
theory, the Landshoff diagrams are the only ones with linear infrared divergences.

There have been numerous speculations about the possible suppression of the Landshoff
diagrams. Clearly, any mechanism which eliminates scale-invariant quark—quark scattering between
quarks of different hadron as empirically required by the absence of a scale-invariant term in the
large p; inclusive data, will also eliminate these multiple-scattering contributions. Polkinghorne
[198] and Appelquist and Poggio [15] have proposed an on-shell infrared suppression factor and
Ezawa and Polkinghorne [116] have demonstrated a simple model in which the dimensional
counting rules are rigorously correct. This is discussed in detail in section 4.3. As a final empirical
note, Farrar and Wu [118] have shown that the Landshoff diagram cannot account for the angular
distribution in present pp elastic scattering data.

4.4. Soft gluon theories

These theories differ from the “hard” gluon theories, exemplified by the Wu—Yang model as
extended by Abarbanel, Drell and Gilman [1], in that the exchange of soft gluons strongly modi-
fies a single large ¢ exchange (Fried, Gaisser and Kirby [126,127]). This damping effect grows
with momentum transfer and actually controls the large angle behavior. There are several versions
of the model which use this same basic physical picture of the large r scattering process, and they
seem to be very similar but differ in calculational details. The elastic scattering amplitude for
pp — pp is of the form

do . (E) lexp4y(f(1) + f(u) — f(4m?—s))] , (4.4.1)
dr dt /g0 m

where the nucleon form factor at large ¢ is given by
Gy« explyf(D)]. 4.4.2)

The Born term due to the hard scattering interaction is usually taken to arise from a low spin
(1 or 0) meson exchange. In the original model of Fried and Gaisser [125], v was taken to be
constant and the function f(¢) was shown to behave as In ¢. In the model of Contagouris et al. [87],
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v grows as Ins. This double log behavior was shown to arise in perturbation theory by Halliday,
Huskins and Sachrajda [140,141], who have clarified the basic properties required so that the
above form holds. This double log was previously found to occur in the form factor in a calcula-
tion by Sudakov [219] see eq. (4.3.7) and can be related to the soft photon forms of Yennie et al.
[228].

Since the effects of soft gluon damping become more important at large ¢, these theories can
explain the large difference between the angular distributions of pp (K*p) and pp (K ™p), for
example. This is in sharp contrast to hard gluon exchange theories that require single gluon ex-
change to dominate at large ¢t and hence would have the cross sections equal.

The predictions of these theories for inclusive reactions is based on the same physical picture,
in which neutral vector mesons are radiated and then decay to mesons. The inclusive cross sections
achieve the form

40 - H(xp) s

d3p
where in the approximate calculation of Fried and Gaissner, n = 2 + 4yx. This behavior is in
agreement with the trends of the data, but it does not scale according to Feynman for x, - 0.
(See Fried [124].)

These theories give rise to a breaking of Bjorken scaling in deep inelastic lepton scattering but
this can be made undetectably small at present energies. The associated multiplicities have also
been discussed by Fried et al. [129,130] and their results can be put in the general form discussed
by Savit [208]. The recent work of Contagouris et al. [87] is an ambitious attempt to fit a large
amount of data with the few parameters in this type of model. One of the main questions is
whether a natural and simple explanation of the particle ratios in inclusive scattering can be
achieved.

Perhaps the most fundamental approach is that persued by Halliday, Huskins and Sachrajda
[140,141] who use perturbation theory on a vector gluon field theory to extract the asymptotic
behavior extending the deep inelastic scattering work of Gribov and Lipatov [133]. The behavior
of the form factor and exclusive scattering at fixed angle was found to be very similar to the above
formula but the inclusive cross section was found to behave somewhat differently. At fixed x, it
was found that many particles could be found with large p; values, and additional logarithmic
behavior arose at small x;. The associated production was found to be widely spread in p, with
large p particles produced which were not correlated strongly with or against the large p trigger.
Again Bjorken scaling is not satisfied in these theories. In contrast to scalar ¢ theories that predict
a finite multiplicity, vector theories yield a multiplicity that grows like a fractional power of Ins
and in general depend on the p, of the trigger.

It must be emphasized, however, that summing only the leading (double) logarithms in pertur-
bation theory may not be an accurate guide to the true asymptotic behavior. A skeptic could well
claim that the exponential sum of double logarithms sums to a negligible contribution compared
to the remaining terms. This should be contrasted with the infrared problem in quantum electro-
dynamics, where Yennie, Frautschi and Suura [228] demonstrated the exponentiation of all
log A dependence as a factor of the matrix element. A related problem occurs on the Regge be-
havior of the models. Halliday and Huskins [139] have shown that for pp - #*#~, the sum of
leading logarithms gives an exponential of double logarithms times an elementary Born term
(fixed pole at j=1). Thus the procedure does not produce a moving pole, which would be expected
in the complete amplitude.

(4.4.3)
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5. Phenomenology and the constituent interchange model

In sections 1 and 4 we have described the hard scattering models and their properties from a
fairly general viewpoint. In order to discuss specific calculations, we now turn to the constituent
interchange model which provides a definite dynamical realization of a quark parton model for
hadronic reactions, and in which all of the generalized properties outlined in section 1.4 are
explicitly fulfilled. These include the exclusive-inclusive connection, generalized Regge behavior,
and the dimensional counting rules. From one point of view the CIM provides a covariant, but
simple procedure for calculating the dynamics of duality diagrams at large momentum transfer,
and thus it naturally incorporates the quark degrees of freedom of hadrons. On the other hand it
is compatible with the conventional Regge and completely hadronic descriptions of low-momentum-
transfer processes. Detailed discussions of the CIM may be found in the varied papers of Blanken-
becler, Brodsky, Gunion, and Savit [38-46] and Landshoff and Polkinghorne [174—177]. Further
calculational details are discussed by Fishbane and Muzinich [121], and M. Schmidt [211]. An
introduction to calculational methods is given in Appendix B. An early comparison of calculation
methods and applications of the covariant parton model and the CIM can be found in the lectures
of Polkinghorne [197] and Blankenbecler [38].

5.1. The structure of the CIM

The physical structure of the CIM for both exclusive and inclusive processes at large momentum
transfer is shown schematically in fig. 5.1.1. The model begins with a basic irreducible large-angle

STRUCTURE OF THE C.I.M,
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Quasi- Incluswe Q2=t s’=xs
x=—t/{a2-t) =t
X, kT
Mean Volue
Theorem
M(AB—CD) Fgp (1) M(Ab ——Cd)
Exclusive s/=%s , t'=t

Fig. 5.1.1. Structure of CIM at large 7 and u.
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subprocess a+b - ¢+ d, involving quarks plus states with hadronic quantum numbers, which is
then weighted by the covariant amplitudes for the fragmentation or formation of the scattering
hadrons. Thus, inclusive processes at large ¢ and u are controlled by quark—hadron scattering,
and exclusive processes always involves quark interchange or quark exchange. We have already
discussed in section 4.3 why scale-invariant quark—quark scattering involving quarks of different
hadrons seems to be negligible or absent. The hypothesis that quark exchange processes should be
dominate was originally made (Blankenbecler et al. [41,42]) to account for the difference in nor-
malization of large angle pp — pp and pp - pp processes, and the fact that it accounts well for the
angular structure of the exclusive processes, especially K*p - K*p, and pp - pp. However, unless
it is suppressed by kinematics, one must allow for hadronic radiation or bremsstrahlung from the
initial beam particles A and B. Thus bremsstrahlung is analogous to the real and virtual radiative
corrections to electromagnetic reactions and it “dresses” and reggeizes the hadronic processes. In
the case of real hadronic bremsstrahlung, the effects may be incorporated into the x - 0 behavior
of the structure function G, / Alx) and G, /B(x), which is related to the Regge behavior of the cross
sections 05, and opy (see section 4). In the case of virtual bremsstrahlung, the coherent emission
and absorption of hadrons between particles A and C moves the Regge poles « ,(¢) away from
their asymptotic values at large ¢. This is discussed in detail by Blankenbecler, Brodsky, Gunion
and Savit [45]. The virtual radiation can be neglected at large ¢ and u, thus exposing the minimal
“impulse approximation’ terms which yield power law scaling laws at fixed angle. There is also
the possibility of absorption corrections from Pomeron exchanges of the initial particles, which is
controlled asymptotically by the S-matrix at zero impact parameter (see Blankenbecler et al.
[41,42], Kane [158]). Absorptive corrections are assumed to not change the asymptotic scaling
laws, but there can be residual effects reflecting the geometrical sizes of hadrons at moderate ¢
values. The small oscillating structure in pp = pp scattering (see fig. 2.1.7) observed as a function
of ¢t by Hendry [146] and discussed by Shrempp and Shrempp [212] is thus not necessarily in
conflict with the asymptotic validity of parton model ideas.

In order to examine the structure of the CIM, let us first consider the inclusive reactions
A+ B~ C+ X in a region of phase space where bremsstrahlung from particles A and C should be
suppressed, for example, the “triple-Regge” region where M 2 < s, and s > — ¢, but |¢| is still large.
The leading CIM contribution is then quark—hadron scattering q + A - q+C, on the quarks of the
target particle B. An elementary calculation, which parallels the standard parton model calcula-
tions for deep inelastic lepton scattering term gives (see fig. 5.1.1a)

. ) 1.1
d3p T3 s+u :,: :s (5 )
'=xu

1
EL =155 46,000 j—‘t’(Aq»Cq)L

where x = —¢t/(s+u) = —¢/(M ?>—t), is the familiar Bjorken scaling variable. The assumptions here
include the convergence of the transverse momentum integrations (i.e., the existence of the
G,/(x)), and incoherence of the various quark contributions, and the usual neglect of the quark
confinement problem.

There exists a corresponding contribution to the exclusive amplitude A + B » C + D calculated
according to fig. 5.1.1c. In this case an integral over the fractional momentum (or light-cone
variable) x = (k,+ k;)/(p,+p,) variable is required. Using the mean value theorem we can write
the contribution from scattering on one quark
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_g_?_(A+B—>C+D)§F§D(t)?d170—(Aq—>C+q)st:f$S, (5.1.2)
although in fact here the quark contributions should add coherently. The central assumption in
eq. (5.1.2) is that the vertex function of particles B and D converge most rapidly; in general the
integral gives additional contributions where hadrons A, C, or D are treated as the target. The
value of x is obtained from the mean value theorem. In practical cases x ~ 1 gives the dominant
region of integration. The form factor Fyy,(¢) falls at the same rate as the elastic form factor.

The expressions (5.1.1) and (5.1.2) have simple analogues when we treat the coherent and in-
coherent scattering the nucleons of a nuclear target; the function G(x) is given by the Fermi dis-
tribution, and Fyp(¢) is the “body” form factor of a nucleon in the nucleus. In the case of lepton
scattering (5.1.1) and (5.1.2) are the standard parton model results. In the case of photon-
scattering, (5.1.2) predicts the dominance of /=0 fixed pole behavior of the Compton amplitude
vp ~ vyp at large ¢, and fixed pole behavior at J below 1 for meson photo-production.

As in section 1.4, we see that the inclusive and exclusive scattering cross sections are connected
and join smoothly since they have the same behavior on the kinematic variables in this limit. A
calculation of the relative normalization is difficult. One difficulty is that of simply computing
the inclusive cross section at a small missing mass, and another arises from the fact that the simple
incoherent sum over final states used above is not justified since many of the final states become
coherent at small missing mass. Therefore, one should not expect the theoretical formulas to lead
to a smoother connection than expected from the above discussion. We also see that this connec-
tion will hold both at fixed 7 and at fixed scattering angle.

5.2. Inclusive scattering in the CIM

5.2.1. Triple Regge region
Let us now examine the triple Regge region by including the Regge effects just discussed. We
now have for the basic scattering of a quark and a hadron

€0 (Aq = Ca) = 17(1) (AW 4 31 () A s (5.2.1)

y(—e) = constant, and a, (- =) is given by the counting rules. Both terms are needed to get the
angular distribution correct. The inclusive cross section arising from this basic process becomes

1-20(1)

. 2
Ldo _ o Y () + F(6) (—x,) D12 + .. (5.2.2)

2)2-20(n) * GQ/B(X) [

Qﬂz—t}
By (Pitm

Now one can identify the expected triple Regge behavior and corrections to it when x,# 1 and
x # 0. '

5.2.2. Central region

In order to get particles into the central region, it is advantageous to let both incident particles
A and B bremsstrahlung, lose momentum and collide at a low relative effective energy. This type
of inclusive process is conveniently decomposed into peripheral interactions, hadronic brems-
strahlung and the basic irreducible process as illustrated in fig. 5.1.1. A very large class of theories
including many of the statistical models can also be decomposed in this fashion. The resulting
cross section is of the form (given in eq. (1.3.10))
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Ed’o = (dedy G )G ELD (it b+ dn (5.2.3)
yER (A+B—>C+X)—ab fx Y Goa(x) Gy p(y o S,:fff’ 2.

u'=yu
and
ME+ME+ME+Me =xps+xt+yu.

The possibility of bremsstrahlung from the final state C will be discussed shortly.

The irreducible process a + b > C + d* (no extra hadrons are allowed to be emitted) can be con-
veniently separated into contributing graphs as depicted in fig. 5.2.1. The first term on the right
gives the pure fixed power-behaved amplitude previously discussed while the second term gives rise
to Regge behavior for the process a + q -~ C + q. The third term corresponds to the production of
a state ¢ in the basic interaction that subsequently decays to the observed particle C.

(c)

Fig. 5.2.1. Structure of the irreducible amplitude ab — Cd*.

Using the relation between the irreducible and total probability functions

1

dz x
G = [ ? Gl (?) Gyp(@) s (5.2.4)
X
the inclusive cross section can be written in the convenient but unsymmetrical form

3 1 - 13
ELoa+B>C+X)= [dz 26,00 ES%a+BoC+X), (5.2.5)

d*p o ® d’p
where z, = —u/(s+¢) and the inclusive cross section under the integral is evaluated at s’ = zs, u'=u,

and ¢'=z¢t. Recall that in this formula, small intermediate transverse momenta have been neglected,
and the required symmetrization between the particles has not been explicitly denoted. This is
easily handled in any specific reaction of interest.

The general behavior of the inclusive cross section can be understood from quite simple kine-
matic arguments that are of course implicitly contained in the above formula. The basic (internal)
process is a+ q > C + q and it has an (energy)? of

NES GO LI (5.2.6)

S.ee = XVS >
eff ~ XV s+t T »

if the missing mass M. is kept finite. Therefore this process is operating at a fixed angle and at an
Sesr ~ 4p%, and one expects the cross section to fall as (p2)~, where N is related to the total
number of constituents involved in this subreaction. Thus the p; dependence of the inclusive cross
section is related to and determined by the number of constituents involved in the basic process.
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Let us further examine the central region where p% = fu/s = constant, and € = M?/s=1.The
integral over z is easily estimated in the above formula and one finds

Edo _
d3p
where N, = 2(1—a,((z) 1)), and {z) is the average value of z involved in the integral. For large |¢|,
a,c ~ o,c(—=) which is a number determined by counting. For example, a,c = — 1 yields p1®
terms, &, = —2 yields p3'? terms, etc. The p, dependence reflects the fixed angle behavior of

the basic processa + b - C + d* of course.

A second interesting region is the threshold region defined by € » 0. This limit should suppress
the bremsstrahlung contributions and one finds that this is indeed the case. Note that the suppres-
sion works from both ends of the integral since z, = 1 — e/(1+1¢/s) - 1, and also, the x variable in
the inclusive process under the integral is

, £ (z—zy)(st1)
xX==——= )
s'+u (zs+u)

Thus in the integrand, z ~ z,, is suppressed and of course z ~ 1 is suppressed by the explicit G(z)
probability function. One finds

23G,(xp,€) (p) e, (5.2.7)

(5.2.8)

EdoL 55 eredy (oo ufs) . (5.2.9)
d3p a,b

where
F(a,b)=g(a/A) +g(b/B)+ 1, G, z(x) ~ (1-xEED etc. (5.2.10)

Let us now examine the integral in more detail for a general contribution. We will assume that
argument of a(¢') can be replaced by a constant under the integral, that is #' > (/) = —2p3 (1+(z) 7,
and assume the probability functions have the simple form G(x) « (1—x)%/x. Finally, the basic
cross section will be written in the general form

do ) nf1=z\V"P (1+z\
at—(s,z)“(s +n12)N( 5 ) (——2—) , (5.2.10H)

where N, a and b may depend parametrically on p% through their dependence on a(t'), since
N=2 - 2a(th) +b.
The integral for the inclusive cross section is

, (1-2x3) &A 2x £B 2\NV ~b —a
b, (g (B () () (1) s
By iy 129 1+z 4p2

where x, = —u/s, x, = —t/s. Changing variables, this can be written as
Edg _ € /o
By 2ApR MW

where M? = m?(1—<(z))/4, e =1—x,—~ x,,and

1(x,,x,),

1
I(x,, x,) =f dnnfA (1—n)®B (x, +e(1—m)V 18872 (x +en)V 178472 (5.2.13)
[}



D. Sivers et al., Large transverse momentum processes 81

This integral representation has several advantages. It explicitly shows the basic symmetry of
the result in x, <> x, if g5 <> g, and @ < b. [t is also in the form of the integral representation
for a hypergeometric function of two variables (Bateman, HTF, Vol. 1, p. 231). The associated
reduction and transformation formulae are very convenient in extracting the limiting behavior of
I(x,, x,) in a variety of regions (Pearson [193]). For example, in the singular limit of g, or
gg ~> — 1, the integration is dominated by an endpoint behavior and one recovers the expected
triple Regge formula. If the probability functions vanish at x =0, extra powers of x, and/or x,
occur outside the integral /(x,, x,).

Note that if € - O for finite x, and x,, the cross section vanishes as €. However, in the triple
Regge region, where 1 = x| > € > x,, [ is easily shown to behave as eV~'78B% This result can be
interpreted as a triple Regge formula with an effective trajectory given by

@ (1) = a s () — 3(1 + g(a/A)) , (5.2.14)

which can be identified as a nonleading disconnected cut contribution.

We have now identified a second important correction to the triple Regge formula which should
become important at large missing mass and provides the correct extrapolation into the central
region. An analysis of reactions of the form pp - CX, where C = p, 7*, K*, p, has been carried out
by Chen, Wang and Wong [76]. As discussed in more detail by Blankenbecler and Brodsky [40],
their results for the effective trajectory provide evidence for the type of correction we are discus-
sing and for the quantum number dependence predicted by the above formula for a .

In the preceding discussion, the possibility that the particle C observed at large p; arose from
the decay of a state, say c, which was produced at large p;, was not included. We have already
argued that a basic large angle scattering process produces resonances with roughly the same cross
section as particles, and therefore it is important to take this into account. Generalizing the for-
mula to this case, it is clear one has (see Appendix A)

Esd—" =2 fdx dy dz G, ;5 (x) G,,/B(y)ac,c (1) —370 (ab—>cd™)|._, 2V3 §(xys+zxt +zyu) .
d p a,b,¢ z t'=zxt T
u'=zyu (5215)

Since particle ¢ must have more momentum than the detected one, C, the argument of 5C e is 1/z,
where 1/z is between O and 1. Using similar arguments as before, the threshold behavior of the
cross section is given by F = 2(n(aA)+n(bB)+n(cC)) — 1 and the p% power N depends on the
basic process just as before.

Roth [204] has emphasized that since (sEdo/d3p) arises from the discontinuity of a 3 > 3 am-
plitude, the same amplitude should describe the two processes A+ B—>C+ Xand C+B ~» A + X,
and they are connected by s < u crossing. Not all models will possess this property. In particular,
those models that try to combine an exponential (statistical) final decay distribution with a power
law initial state scattering amplitude cannot satisfy it.

This crossing relation must be satisfied and it leads to restrictions on the probability functions
G(2). In particular, from the structure of the above equation there must exist a relation between
G(z) and G(1/z), and this relation for scalar particles turns out to be

Gya@) =~z Cxp (zl) (5.2.16)

If this relation is used for both G,,, and EC/C, and one writes
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20 (ab > cd*) =L 1M(ab > od")I? | (5.2.17)
N

one can easily cross this relation (s <= u) and arrive at the formula

Edo 1)do — 14y XVS )
a g)c fdz dy dx Gc/C(Z)Gb/B(y)GA/a ( )dz‘ (cb~ad )T S(zys +zxt+xyu) , (5.2.18)

which is of the same form as the original equation.

This continuation formula for G is consistent with the integral equation satisfied by the G’s.
That is, if the hadron irreducible function G' satisfies this relation, then so does the full G.
Writing eq. (5.2.4) in the form

zGB/A( ) —zZ)f —GB/a( )Ga/A(x), (5.2.19)

and using the continuation formula twice on the right hand side and the change of variable xz - x,
one finds

Gyya (—) Ef —G,x,a( )5§/ﬁ(x)=5A,B(z), (5.2.20)

as required, since G satisfies the conjugate equation to (5.2.4).
It is amusing to note that a general solution of this functional equation, if one requires that

Ggia=0ap=Gip,is
G(X)= I;X(l+x2_ax)g(xl+x) . (5221)

If @ =2 and g = constant, this reduces to a commonly used approximate form for the nucleon’s

structure function. If spin one-half particles are involved, there is an extra factor of (—1)/(A:-B),
where fB) js the total number of fermions in the state (AB). This factor arises from the asso-
ciated spin traces; its effects need to be fully explored in the general case.

5.3. Exclusive scattering in the CIM

The objective of this section is to discuss several exclusive scattering processes and to extract
their expected angular as well as energy dependences in the CIM. This will lead naturally into a
discussion of the connection between the fixed angle and fixed ¢ (Regge) behavior. As we shall
see, this type of composite model predicts a particularly simple connection which has many
experimental ramifications. A discussion of calculations of the scattering of composite systems
is given in Appendix C.

The crucial result which characterizes a scattering matrix element in the CIM is

Mup_.co@W,t) ~ Fip(OM o qclu, ) + .. (5.3.1)

where F§,(¢) falls in ¢ as the B -~ D transition form factor and q is a constituent of particle B as
illustrated in fig. 5.3.1a. The crossed diagram of 5.3.1b is also present. Direct quark—quark
scattering such as in fig. 5.3.1c¢ is neglected.
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(a) l
\ a b
p ¢ p+q
(a)
2 4
(b)

(su}
|
(tu)
(c)
Fig. 5.3.1. (a) (u?) quark interchange contribution to hadron— Fig. 5.3.2. Hadron form factor and scattering amplitudes in
hadron scattering. The wavy line represents the remaining the constituent interchange amplitudes. The wavy line repre-
“core” of the hadron after one quark is removed. (b) (s) sents the remaining ‘“‘core” of the hadron of the one quark is

quark exchange contribution to hadron—hadron scattering. removed.
(c) Gluon exchange contribution to hadron—hadron scattering.

Let us now apply this formula to meson—baryon scattering, first ignoring spin effects. In general,
the scattering amplitude is a linear combination of (u¢) and (s¢) contributions which we will write
in the form

M(s,t,u)=aM@,t)+B8M(s, 1), (5.3.2)
where asymptotically
Mu, )~ (=) (), (5.3.3)

for the constituent interchange diagram of fig. 5.3.2b. The factor (¢)~2 is interpretable as a “form
factor” of the nucleon as illustrated in fig. 5.3.2a, while (—u)~! is the quark—pion scattering
amplitude.

The value of @ and § for a particular reaction depends upon the quantum numbers assigned to
the constituents. Pearson [ 193] has evaluated these coefficients in the SU(3) quark model. He
further separates the terms into contributions arising from a hadronic core having quantum numbers
of a {6} and a {3} by writing & = a(6) + «(3) and similarly for 8. The values for a selected set of
reactions is given in table 5.1. Once the behavior of the M’s are given, the values of « and § deter-
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Table 5.1
Reaction «(6) o3) 8(6) 8(3)
atp—ntp 1 1 2 0
mp—onp 2 0 1 1
77p — #°n -1/\/2 132 1N2 “12
K*p— K" 1 1 0 0
Kp-Kp 0 0 1
Kyp— Ksp -1 0 1 0
atp—K*s* 0 0 -2
K'p—nx© -1\/3 0 13 0

mine the angular distribution at large angles. In the simple quark counting model, the core is

{6} + 3{3}. However, the inclusion of the effects of spin (see below) modifies the expected angular
distributions without changing the energy dependence at fixed angle. Absorptive corrections are
assumed to affect the magnitude of M but not its large angle behavior if the absorption is smooth
at short distances (as suggested by Kane [ 158]).

A specific model for meson—baryon scattering which included the effects of spin and assumed
that the baryon was primarily a bound state of a quark and a spin one core was discussed by
Blankenbecler, Brodsky and Gunion [43]. In this model, helicity is conserved asymptotically and
the cross section has the form

gtg“ (—u/s)|BI*, (5.3.3)
with

B, t,u)=aB(u,t)+BB(s,t), (53.4)
where

Bu,n)~(—u) (=72, (5.3.5)

for {u| and | ¢| large. Predictions for some typical differential cross sections in the limit of exact
SU(3) are given in table 5.2, see also fig. 5.3.3.

Table 5.2
[
g_a = _o. M R2(Z)
t §8 (1—2)4

Reaction R(2)
a'p ~>n'p 4a(l+2)2 +p
mp —2>wp 48(1+2) % +a
K*'p-K'p 4a(1+2)2

Kp—-Kp o
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Fig. 5.3.3. Comparison with interchange model predictions for k*p - k *p and n*p — n*p elastic scattering. From Lundby [182].

The above invariant matrix element can also be used to describe the annihilation of pp into
mesons by continuing to this channel by s «<— ¢ crossing. Two results which follow from the
above are

N 0.(1-2%)
3% (Bp~>7'17) = [a(1-2)2+ f(1+2)?)? (5.3.6)
§
and
_ o,(1-2%)
X Bp - K'K) == [a(1-2)2)?, (53.7)
- S
which yields the ratio
99 (k=p-> K=p)/ 92 (Bp - K*K) = 21-2)" . (.3:8)

The above results have been confirmed by the recent calculation of Matveev et al. [184] who
assume a =2, §=1, and vy, invariance (at high energies).

In the case of nucleon—nucleon scattering, the general treatment of the angular distribution
taking into account the spins of the four external baryons and the six internal quarks is extremely
complicated. The proton wavefunction was treated in leading order as a quark bound to a spin-one
core, and spin effects were then treated exactly in the work of Blankenbecler, Brodsky and Gunion
[43]. It was found that the dominant invariant amplitudes were the vector and axial-vector ones
and hence that s-channel helicity was conserved in this limit. In the paper by Matveev et al. [183]
dimensional counting behavior of s7!° and s-channel helicity conservation were assumed. They
then obtained an angular distribution that was somewhat different from Blankenbecler, Brodsky
and Gunion near 90° and quite different for smaller angles. An important point here is that the
lack of antiquarks in the nucleon wavefunction means that the (s¢) graph does not occur in lead-
ing order and the (#¢) graph (with final particle symmetrization) dominates the interchange amplitude.
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All of these types of models predict that the dependence on energy and angle factor into the
form

%g (pp > pp) ~s7"R(2) + O~ 1) . (5.3.9)

A check of this separation is shown in fig. 4.2.1 and fig. 2.1.8. The best fit value of n depends
somewhat on the kinematic range involved. The angular dependence following from these models
is also quite restricted and can be characterized by

R()=(1-z»)"%J(2), (5.3.10)

where J(z) is slowly varying. This is again in reasonable agreement with the data. A precise calcu-
lation of J(z) is very model dependent and very difficult.

A severe test of any model is to take the matrix elements and to use them in both the direct
and crossed channels. It is very instructive to first consider models where a single vector meson
exchange dominates the amplitude. The magnitudes of the angular distribution of pp and pp
elastic scattering in this case are comparable around 90°, except for identical particle effects. If
there are only neutral vector mesons then np should also be similar to pp in the backward hemi-
sphere and have no backward peak. The data seems to rule out this scattering mechanism on both
counts. Experimentally, the angular distribution of pp is strongly suppressed relative to pp and
np - np has a backward peak.

In contrast the differential cross section that one gets in the CIM by crossing from eq. (5.3.10)
can be characterized by the form

g}q_(ﬁp_)ﬁp)=s-n(l_z)~6j(z) , (5311)

where J(2) is slowly varying. The value of J(0)/J(0) is also predicted, and we shall return to this
point in the next section. Also, the CIM amplitude for np - np is found to peak in the backward
hemisphere.

One of the difficult questions to answer in interchange models concerns the prediction of the
absolute normalization of the scattering amplitude. A detailed model of the hadronic wavefunc-
tion is required as well as a careful calculation of all the contributing diagrams. The most careful
treatment for proton—proton scattering seems to be the work of Hayashi and Yabuki [144]. They
assumed the quark-core model of the nucleon and find for the scattering amplitude in the spinless
case

do

i = mQ2my)em=4s3(1—-22)"6572In2(s/sy) , (5.3.12)
where m is the effective parton mass and the nucleon form factor has the behavior
F(g®) = (my/q9)*In(q?¥s,) , (5.3.13)

so that m? = 0.71 (GeV/c)?. The value of m required to fit the data is very small and lies in the
range 3050 MeV if s, =1 (GeV)2. An important question’is whether or not the inclusion of spin
and the effects of the large numbers of coherent exchanges that contribute to the process modi-
fies this result substantially.

Finally, it should be remarked that the energy dependence at fixed angle for resonance produc-
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tion is the same as for elastic scattering in this model. For example, the fixed angle cross section
for pp - N*p or N*N"* should fall in energy at the same rate as pp elastic, and similarly for

ap > wN*, pN or pN*. The angular dependence for these latter processes should be different in
general, and a measurement of their characteristic shape would help determine the properties of
relevant wavefunctions.

5.4. Fixed-angle and Regge behavior in the CIM

We have seen that the typical basic scattering process between hadrons falls with energy at
fixed angle rather rapidly in the CIM. This is true even at fixed momentum transfer unless there
is a direct vector gluon force (which we have argued must be negligible). The basic scattering
process can be considered as in fig. 5.4.1a. If it falls as s increases at fixed ¢, then the system will
prefer to scatter through diagrams of the form shown in fig. 5.4.1b. In this virtual bremsstrahlung
diagram, particle A converts to H with a fraction x of the incident momentum and other coherent
“stuff” with momentum (1—x). The basic process is thereby converted to H+ B > H' + D scatter-
ing at the reduced effective energy s’ = xs. If x can be small, then this process is not suppressed
much if H' can pick up the momentum fraction (1—x) and convert to C. This latter process is
suppressed as ¢ increases, so that in the large ¢ and eventual fixed angle limit, the irreducible
process (fig. 5.4.1a) will dominate. At small ¢, the short circuit diagram will dominate and the
cross section will fall less rapidly in s. This is the typical origin of Regge behavior in this model at
small ¢. It is dominated by the emission and absorption of the less massive hadronic states. They
therefore control the long distance or small-¢ behavior of the amplitudes.

As discussed earlier, the amplitude for the process A + B> C + D can be separated into the form

M~ By () (—u)*=D + By (1) (—9)*ACP + (5.4.1)

for fixed f as s > . The asymptotic behavior of the trajectory a . at large | ¢] is controlled by the
basic process which in this case (see fig. 5.3.1a) is quark—hadron scattering. It can be shown that
the dominant diagrams using quark counting lead to

aAC(—°°)=%(4—nA—nC—nI), (54.2)

Byp (D) ~ Bgp (1) ~ (—H"1~ "B D)2 (5.4.3)

where n,; is the minimum number of exchanged quarks.

These predictions do not automatically lead to factorization of residues as is required of ¢-
channel singularities in Regge theory. For example, the above formula predicts that a"p(—oo) =-1
and a, (—) = —2, but, of course, factorizable poles must contribute to both processes. In this
case, the coupled channel T-matrix equations automatically force a cancellation between asymp-
totically degenerate trajectories so that the above relations are satisfied (Blankenbecler, Brodsky,
Savit and Gunion [45]). It was shown that the coupled (in the ¢-channel) system of meson—meson
and baryon—antibaryon scattering has an amplitude of the form (neglect signature)

M=8() ()P + 87 (1) (—)* D + 8, (1) (—u)*°D + ., (5.4.4)
where in the particular case studied,

o, ()~ —1+0(-"2, a ()~ -1+0(-0n", ag(t)~—2+0(-1)"2, (54.5)
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(9)

Fig. 5.4.1. (a) The irreducible contribution to hadron—hadron scattering. By definition Hy (virtual) hadronic bremsstrahlung occurs
before the interaction of A and B. (b) Virtual hadronic bremsstrahlung contribution leading to Regge behavior of the scattering
amplitude.

and the §’s depend on the channel involved. For meson—meson scattering, 8% ~ (—¢)~! and

B~ ~ —(—1)"%. Hence the fixed angle behavior is given by the first term. For meson—baryon
scattering, 8* ~ (—¢)~%? and B~ ~ (—1)~2, and the fixed angle behavior arises from the first two
terms. Finally, in the baryon—baryon case, * = —8~ ~ (—¢)™3, and the first two terms tend to
cancel with a remainder of the order of (—u)"'(—#)"5In(—u) « s~®Ins at fixed angle. The third
term then dominates at fixed angle since it is of order (—u)~2(—t)"2 « s~ at fixed angle.

It should be noted that the cancellation between the two leading trajectories in baryon-—-baryon
scattering should occur when o* = —1, since a~ is expected to be quite flat. Now o is the trajec-
tory that dominates pion—nucleon scattering and the effective trajectory extracted from the data
seems to reach (—1) for |¢#] 2 2—3 GeV2. Thus one should expect the fixed angle power behavior
5719 for £’s larger than this value; the behavior for smaller | ¢| values depends in detail on the
behavior of g, (¢).

In some models, the leading trajectories for pp and mp scattering both approach the same value,
but there are still degenerate trajectories at that value in order to produce the correct residues. In
other models, the trajectories continue to fall logarithmically, see Baker and Coon [21].

A detailed fit to pp > 77" and K~K* at low energies has been carried out by Donnachie and
Thomas {100] who add the CIM term to a conventional Regge expansion with granddaughter
trajectories. The CIM is important at low energies and low momentum transfer in their fit, perhaps
because of the weakness of baryon exchange. Their form of the amplitude can be interpreted in
terms of eq. (5.4.5), since the first term contains the ordinary Regge meson resonances on a, (f)
and its recurrancies. The second term is essentially a fixed pole since a_(z) = —1 for all reasonable
|£] and B~ = (—£)~2 — which is exactly in the CIM form.

The counting rules determine the asymptotic behavior of exotic as well as nonexotic trajecto-
ries. For example, app(——w) = —2 whereas the exotic double baryon exchange trajectory aﬁp(—oo)
= —4 and the corresponding residue is constant. Since the forces in exotic channels should be
much weaker than in nonexotic ones, one might expect that al_)p(u) remains near al-)p(—oo) for all
u whereas the residue need not remain constant for small . If this is the case, then do/d¢ (pp) will
vary as 522 ~ 5710 throughout the backward hemisphere; this is consistent with the present data
even in the backward (exotic) peak.

It should be noted that the predicted matrix elements for a given signature are of the form
B(){(—u)* % (—5)*]. This form is to be used to extract the effective trajectory from the data even
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at large ¢, where |u| is not = s as is required in the usual Regge formula. The effective trajectories
extracted from pp and 7~ p elastic data are shown in fig. 3.1.4. It is the trajectory extracted in
this manner which is to be compared with the CIM predictions. This was discussed in some detail
in section 3.1.

3.5. Decay distributions [40]

The functions G, (x) have been introduced to describe the fractional longitudinal momentum
distribution in a Lorentz frame in which p, - (see Appendix B). It is possible in fact to deter-
mine important features of G(x) by making measurements using other experimental observables
which allows one to correlate decay properties of heavy systems, such as the timelike photon in
e*e™ decay with photoproduction, for example. Other examples which may be interesting to
study are NN annihilation and the decay of heavy diffractively produced states.

The function G /A (x) describes the breakup of A into the off-shell state H and a remainder.
The decay of an unstable state A will reflect the threshold behavior of G in a new experimental
context. In terms of the usual center-of-mass variable w = 2E,/M , , the inclusive decay A » H+ X
is described by

%s dyy (@) . (5.5.1)
In terms of a variable which is more like an infinite momentum frame variable, namely
x = (Ey+p§)/M,, where z is an arbitrarily chosen direction, the decay distribution is

1
% = Dya@) = [ de(w? —4MEMA) ™ dyy p (w) Ol x— ME/xM] . (5.5.2)
0

The distribution vanishes if x is too near 0 and 1 and is naturally peaked at x = M /M,.
Using the model described in Appendix A, the momentum distribution is given by

Gyax) = i(lex) [ d*ky db? p(6?) $*(x ) [xS]72, (5.5.3)

where 0 <x <1 and
M2n +kI2 b? +k%

(5.5.4)
1—x

S(kp,x)= M2 —

b

where b? is the (mass)? of the “core” and p(b?) is its distribution. The decay distribution is easily
computed by evaluating the imaginary part of the self-energy diagram. The decay width is easily
seen to be

I« Im [1‘% A2k, db? p(b2) $2(yS) [ ¥S]~2 . (5.5.5)

If $? is chosen to fall as a power of its argument, then it is easy to see that for x and w near 1,
Gyjalx) ~ (1—x)sM/A) | dyalw)~ (1— )8 H/A-1 (5.5.6)

and hence
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DH/A(X)N(I*x)g(H/A)- (5.5.7)

The measurement of the decay functions dy /A(w) and DH/A(x) will provide independent evidence
as to whether the dimensional counting rules are correct in general. An exciting possibility is to
measure the threshold behavior in nuclear—nuclear collisions. The nucleons are the relevant con-
stituents at low energies, and as the energy increases, the quark degrees of freedom should thaw
and eventually become manifest. This transition would be very interesting to study — it could
yield important information on the correct treatment of composite states.

5.6. Characterization of inclusive reactions

In this section a rough characterization of some selected inclusive cross sections in the central
region will be given to illustrate the strong quantum number dependence of the predicted limiting
behavior as € - 0. The integral /(x,x,) defined in eq. (5.2.13) will be omitted in this discussion
but should be included in any detailed numerical fit to the data over large € range. In the previous
sections we saw that the contribution of a particular basic process was described by the two num-
bers F and N. The value of F, the forbiddeness, measures the number of fields that must be radia-
ted by the incident systems to arrive at the given basic process plus the number that must be
radiated by ¢ to produce the observed particle C. The value of N depends on the number of fields
that are involved in the basic interaction process that produces the large angle scattering. It should
be stressed at this point that the precise rules for which basic processes are allowed depend upon
details of the quark confinement mechanism. Many choices are allowed within the CIM framework.

A comparison with the local effective powers F,¢ and N for data from ISR and FNAL as
discussed by Blankenbecler, Brodsky and Gunion [44] is also given in this section. Finally, the
existence of quasi-elastic peaks in the data for particle—antiparticle differences will be discussed
since it can provide an important confirmation of the overall hard scattering picture.

In order to clarify the formulae to follow, consider some typical basic CIM processes and the
types of states that they contribute to (M = any meson state, B = any baryon state):

N =4 (6 quarks involved) N = 6 (8 quarks involved) N = 8 (10 quarks involved)

M+q->M+q M+M->-M+M B+M-B+M
qtq->M+M q+(qq)~M+B B +(qq) > B+ (qq)
q+q—->B+gq B+gq->B+q (qq) +(gq)>B+q

qt(qq)~>M+q
q+q-B+B

The case of N =2, quark—quark scattering, will not be considered further.
The inclusive cross sections will be written in the standard form
—‘iado (AB>C+X)=(p3+m}) 7 Q,(C,e) + (p7 +mZ)~°Q(C,e) + ..., (5.6.1)
P
where the dependence of the Q function on the angle has been suppressed as has the dependence
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on the target, incident beam, and detected particle. Only the terms with the minimum values of F
will be explicitly written. However, one should keep in mind that as the energy increases for fixed
Pr, € > 1, and larger F values can be expected since extra bremsstrahlung becomes more and more
favored. Our discussion is not meant to be exhaustive but only to indicate the general features
expected.

The most important terms in reactions of the type pp > CX where C = #*:°, K*, n, p**9, etc.
are expected to involve N=4 and 6 from the above table. Higher values of N may be present of
course, but they should be damped by the large p; and finite € values involved in present experi-
ments. It is straightforward to count the minimum amount of bremsstrahlung necessary and one
finds

Qu(me)=h,e® +h,e' +hieP+ ..., (5.6.2)

where the &', term can arise from the same processes that produce the /2, term with the emission
of an additional mesonic (qq) pair. Also

Qc(m,e)=hye’ + ... (5.6.3)

The “constants” h; depend on the choice of C and depend on x,, x, through the integral /(x,,x,).
In the reaction pp - K™ X, which might be termed “forbidden”, the initial state has no quarks
in common with those in K™ and more bremsstrahlung is required to connect them. One finds

Q,(K™,€) =h,e +he?, (5.6.4)
and
0 (K™ e) =hye® +.... (5.6.5)

Note that if the €!! process (q + ¢ > M + M) dominated both the K™ and K* reactions, then the
ratio (K7/K*) would be constant. In general, however, one might expect that this ratio will fall as
€2 or €* as e decreases.

The reaction pp = pX is an interesting one because it involves a more complex trigger particle
which is also present in the initial state. It has several new types of subprocesses that contribute
to it. The basic process q + q » B + g will ultimately produce a p3® behavior if it is present, but
one might expect that those mechanisms that dominate the exclusive scattering amplitude should
be very important (that is, q + B—»> q + B and (qq) + B » (qq) + B). These involve a large N value
but should be dominant at small e. There is also the (possible) basic process (qq) + (qq) > B +q
that is the only one that requires double fragmentation and also contributes to leading order in
the inclusive limit (s~'°). The cross section should be characterized by the forms

Q,(p,e)=He" + ...

Qu(b,€) = Hye® + Hy(M) " + Hy(B e + .
Qg(p,€) = Hee + Hee® + H,(B) e + ..
Qio(p,€) = Hge® + ...

The term H4(M) is written so as to emphasize that an associated meson system is produced with
the proton and these terms should be comparable in the two cross sections. Similarly for H4,.,(B),
so that in the antiproton cross section should look like

(5.6.6)
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Q, small
Q¢ = Hy(B)e" + ... (5.6.7)
Qs =H,(B)e'' + ...,

where consistency demands that /,(B) and H,(B) are of the same magnitude as H,(B) and H,(B)
extracted from a fit to the proton data.

It is of particular importance in understanding the basic dynamics of large p reactions to com-
pare experiments with different beam particles. This degree of freedom allows one to change the
predicted F value for a given N value and to check the normalization of the basic subprocesses.
One important process is clearly mp - X which is expected to be of the form

Q.(me)=ke” +k,e5+ ke’ + ...
Qq(m, €)= kye + ke + kg(ByeS + ...

The k; and k4 terms do not Feynman scale but they do contribute to the exclusive limit behavior
of s7®. They involve the basic processes 7 + q > 7 + q and q + p » 7 + (qq) respectively. The ke(B)
term produces a recoil baryon system and it should also show up in the reaction 7 + p > pX. Other
final states can be discussed in a similar manner.

The final process to be described here is the reaction pp - X that allows the possibilities of
new types of basic processes. The cross section can be written in terms of

Q4(7(,€) =K1€9 + K267 + e

Qe(m, €)= Kse* + Kye5 + Kge + ..

(5.6.8)

(5.6.9)

where the K, term arises from the process (qq) + (qq) > 7 + M*, and K, from q + (qq) » m + q. The
K term is the only one that contributes to leading exclusive behavior of s~® and involves
p+(qq)—»w+qand p+(qq) > 7 + q. Without extra bremsstrahlung it does not Feynman scale.
Detailed fits to data are necessary to determine which diagrams are important. Such fits can be
found in the paper of Raitio and Ringland [201].

The characterizations given above emphasize that there are two distinct limits involved here
which are sometimes confused in the literature. They are (1) large p with € (or x1) fixed in which
the minimum value of N eventually dominates, and (2) e - 0 with p fixed in which the minimum
value of F dominates. This should be kept in mind since it is often stated that the parton model
(not further defined) predicts a factorization for x; ~ O:

Edo
d*p
We see that this is correct if one sums over possible values of N in the above formula. This sum is

absolutely necessary since, in general, different terms with different N values will dominate in the
two limits defined above.

However, this form suggests two important and complementary ways of extracting information
from data. Since f, (¢) is predicted to behave as ef for sufficiently small e, this provides the moti-
vation to define effective powers N,y (€) and F,«(p1) by the equations

Now(e)=—p3 == In (Esd") : (5.6.11)
op1 d°p

=~ (p2 +m*)~N fy(e). (5.6.10)
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where the derivative is taken at fixed € and 6, and
£ o)
d3p ’
which is calculated at fixed p; and 6. These two functions can be extracted directly from the
data. They provide not only an immediate first test of any theory, but also a guide in determining
the types of terms involving different values of NV and F that are required in a detailed fit and in
estimates of the masses required. The N and F values then provide clues as to what type of basic
processes are important which then leads to the type of final state correlations that are to be ex-
pected. The functional dependence of N 4 and F ¢ can be computed in models as per eq. (5.2.12).
Because of the variation of the integral /(x, x,), F 4 can vary from F as G increases even if one
term dominates.

The extractions for the BS data from the ISR and the CP data from FNAL are shown in figs.
5.6.1 and 5.6.2. Since mass corrections will affect the shape of N, at small p, decreasing its
value there, and since N ¢ must vanish at p; =0 if the process is to Feynman scale, the experimen-
tal results clearly show the presence of N=4, 6, and 8 terms as expected and show little difference
between particle-antiparticle. The F 4 curves, however, can be quite different for various particle
types. Their values clearly tend to increase as the energy increases although the errors on F 4 are
quite large from the ISR. The F 4 curves for K™ and p are higher than for the other particles,
reflecting more bremsstrahlung, and are quite flat, reflecting an origin in the pionization region.
The F 4 value for protons is quite small, especially in the FNAL range, characteristic of fragmen-
tation and the protons presence in the initial beam. For the further details on the analysis of these
curves, we refer the reader to the original paper (Blankenbecler, Brodsky and Gunion [44]).

An interesting application of how the N, F, ¢ analysis can be used to predict correlations is
provided by the reaction up - 7X. Here we expect two leading contributions, (a) N=2, F=5 cor-
responding to the usual parton subprocess u + q > u + q where the large p; of the 7 is balanced by
the muon, and (b) N=3, F=4 corresponding to yq » 7 + q in which the recoil momentum is taken

0
Fe(pr) =€ ——In (

P (5.6.12)
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Fig. 5.6.1. Plots of Negr and Fegr from the ISR—CCR data for the reaction pp — n°X for three energy pairs. The statistical errors
are of the same size as the discrepancies from different energy pairs.



94 D. Sivers et al., Large transrerse momentum processes

20 T T 7 T T T 771 T T 17 17 T T T 7 T T T T T 71
| . 1 _ 4 Fk
|6 | m B m | P
" i . 10 ISR N
ISR B
Fett - E 1 1 r
8 o _J — . ‘4 [ E .
- ‘: ] [ ] ’ B L ISR
Lol LY i !
° FNAL . I { T2l
— - — —
0414;111»1» B Y T N S N Y| 1](1]111
0 2 4 6 8 I0 O 2 4 o 8 10 O 2 4 6 8 10
py (Gevrc) p; (Gevrc) p; (Gev/c)
€ € €
0O 08 06 04 02 O 1O 08 06 04 02 O IO 08 06 04 02 O
L L AL R A L
B - en?
L . x B Qs
ot 1IN ’!'
- ISR - ISR
T O S O Y O T TS S NN T S SO S |

O 02 04 06 08 100 02 04 06 08 100 02 04 06 08 10

I-€ I-¢ I-¢
0T T T T T T 1 LI L L A R
L Kt L 4
16 - . L L.
B ] I~ z ISR ,
12 - ISR 7 N B
Feff r T - N
*
8 I — - 1i 3 -
- k .
4l 1e? B L .
B FNAL N
0 1 1 L N Y SO S S N W S T I L
0 2 4 6 8 10 O 2 4 6 8 10 O 2 4 6 8 o]
pr (GeV/c) p; (Gev/c) p; (Gev/c)
€ € €
0O 08 06 04 02 O 1O 08 06 04 02 O 1O 08 06 04 02 O
T T T T T 77 T 1T T 7 7 17 177
- kL 9" 5
IPRREL 3 ]
- 4. L ISR 4
'II'SRI T N TR W S | T I GRS N T S S A
0] 02 04 06 08 10O 02 04 06 08 110 O 02 04 06 08 1.0
I-€ 3 I-€

Fig. 5.6.2. Plots of Negg and Fegp from the ISR—BS and FNAL—CP data for charged particles. The FNAL energy pairs are
(19.4-23.8 GeV) marked by X’s and (23.8--27.4 GeV) marked by dots.

up by a jet of hadrons. Another important application of this analysis is the process pp - uX,
since it separates the Drell-Yan N =2 process from hadron-produced muons.
These F,;, curves also display an important feature of hard scattering modzls which provides
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an important check of the presence of a small number of constituents. This feature is the presence
of quasi-elastic peaks in the x distribution corresponding to the most likely momentum distribu-
tion among the constituents involved in the basic subprocess. For this configuration the cross sec-
tion will peak as a function of x; and hence F,; must vanish there. This is only seen in the differ-
ence between particle and antiparticle cross sections since then the Pomeron component (which
peaks at x = 0) cancels, allowing the valence part of the wave function to be observed.

The inclusive cross section can be written as an integral over z, the cosine of the C.M. scattering
angle in the subprocess (neglecting final state bremsstrahlung ¢ » C):

(I“ZX2) 2x zx 4 2
Eda"‘f L Fun (—') FbB(—z)@(S': o ,z), (5.6.13)
&’p Z—2xyy (1-27%) MR\ 1+z B\1-z/ dt |_2

where F'(y) = yG(y). Now the valence part of the probability function should be peaked at the
values of y corresponding to the zero binding limit. That is, the first one should be peaked at

X, = N,/n,, where n, = n, + n(aA), and n, is the number of constituents in the state a. Similarly
for G, . If these peaks in the integrand control the values of z, that is, if the angular dependence
of do/dt is sufficiently mild, then there is a peak in the integral at the value

. Na . 6 s 6]_1
P 0, 0 5.6.14
Xp=xp=2 [”a ctn 3 . tans] ( )

where @ is the C.M. scattering angle of C. Thus the scattering arising from the valence part of wave-
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Fig. 5.6.3. Fegr for particle—antiparticle differences illustrating the peak in e as Fggr vanishes.
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function should have an F ¢ =0 at this value of x; (for example, at 90°, and for n, /n, = 3,
nglny =5, X = 5). If there is final state bremsstrahlung, the value of X should be multiplied by
nel/(ne +n(Ce)).

The analysis for the differences (K* —K™) and (p—p) are shown in fig. 5.6.3. The difference
between 7" and 7~ is of the same size as the errors, and this analysis cannot be made in this case.
We see that F i does seem to vanish in both the ISR (at x; ~ 0.1) and FNAL (at x; ~ 0.2) energy
ranges. The relative values are consistent with the fact that larger F . values are found at the higher
energies. The absolute values are reasonable if important small x, Regge terms are still present in
the difference of cross section.

A final simple consistency check is to examine the exclusive limit of the processes analyzed
above. The exclusive limit cross section should fall as a power of s given by N,, = [+ N+ F. From
the CP data, (N,, )4 is estimated to be ~12.5 for 7* and K*, ~14 for K=, ~13 for p and ~ 17 for
p. The values are higher by 1 or 2 for the BS data. These results are to be compared with the
minimum possible values, which are 12, 14, 10, and 16 respectively, but a given subprocess will
in general have a larger N,,. The particular values are in reasonable agreement with expectations,
and the relative ordering is as expected. See also the excellent paper by Jarlskog [157a].

5.6.1. Photon processes

Large transverse momentum processes onvolving photons are particularly important tests of the
hard-scattering models and the counting rules (4.2.1-4.2.10) since they directly probe the point-
like nature of the constituents. If the photon is counted as an elementary field, an explicit break-
down of vector dominance in the large momentum regime is predicted. The measurement of
vp - wp at fixed angle by R. Anderson et al. [11a] at SLAC gives do/dr ~ s~ 73*%% and is consistent
with the dimensional counting prediction of s~7, although higher energy tests are required. Pre-
dictions for the angular distribution are given by Scott [214]. A gauge invariant parton model for
photoproduction is given by Mueller-Kirsten and Hite [189]. We emphasize that Compton scatter-
ing at large ¢t will provide a decisive test of the electromagnetic structure of hadrons. Parton model
(see Brodsky, Close and Gunion [61], and Landshoff and Polkinghorne [172—174]) and light-cone
analyses (see Frishman [130a]) demand the existence of a J = 0 fixed pole contribution to the
Compton amplitude. Thus, for sufficiently large | #| (where normal trajectories recede to negative
values)

@(7p»7p)aiF2(t), s>\, (5.6.15)

dr 2
with F(¢) « t~2, consistent with s~® dimensional counting fixed angle prediction. Measurements of
interference effects in e*p - e*py can test the prediction that the fixed pole contribution is inde-
pendent of photon mass at fixed ¢. These and other related tests are discussed by Brodsky, Close
and Gunion [61].

Deep inelastic Compton scattering yp ~ yX and pion photoproduction yp > 7X at large p are
very interesting and basic inclusive tests for any parton model. The asymptotic cross section
Eda/d3p (yp > vX) is predicted to be scale-invariant and proportional to the sum of quark charges
to the fourth power (Bjorken and Paschos [37]). However present experiments are kinematically
restricted in the small-+ domain and thus can be expected to be sensitive to non-leading contribu-
tions in p;. The conventional and expected contributions to yp > X and yp - 7°X arising from
(a)y+q->w+qandy+q~vy+qsubprocesses are illustrated in fig. 5.6.4, with additional, non-
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Fig. 5.6.4. The basic processes discussed in the text for inclusive (a) photoproduction and (b) Compton scattering.

leading terms arising from the subprocesses q + B - 7 + (qq) and q + B - v + (qq). Just as in the
hadronic case, the latter type of diagrams — which have a minimum number of spectator quarks —
are expected to be especially important at small €. It is perhaps easiest to think of these as arising
from the baryon scattering off of the (qq) components of the target photon. Using the counting
rules as given before, the expected cross sections are

J, e J,e®
Ed9 (ypsaxy= ! TR S (5.6.16)
d3p (p%+m2)3 (p%+”12)6
and
' J el Je®
Edo poyy= —15 424 (5.6.17)
d3p (p%+m2)2 (p%+m2)5

The €° terms (which also include the usual electromagnetic logarithmic factor) would be €! if the
photon were pure vector meson dominated so that it would act like a qq state rather than a fun-
damental field.

The photoproduction process has been analyzed by Eisner et al. [106] at p; ,5 = 21 GeV/c for
7° and they find N g = 67 and F,;; = 0.5 with m? = 0.5—1.2 GeV?. Boyarski et al. [55] have
analyzed 7", K*, and p* data at 18 GeV/c and for the charged pion case find a reasonable fit with
Ny = 6 and F, = 1. In the case of deep inelastic Compton scattering, the SLAC measurements
of the Santa Barbara group (Eisner et al. [106]) give a fit with N ¢ = 4.5, F ¢ = 0.5, and
m? = 0.8 GeV2. Further the ratio of yp > yX to yp > 7°X does seem to be consistent with the
predicted p% + m? behavior; despite the extra factor of a. The cross sections should eventually
become of comparable magnitude. Note that if yp - yX is measured at large ¢, away from the
edge of phase space, we still expect the scale-invariant parton model prediction to hold at large
pr- Finally, we also mention that the difference of cross sections for e*p - e*yX at large photon
mass and large p measures the interference of Bethe—Heitler and virtual Compton amplitudes
and the sum of the cube of the parton charge (see Brodsky, Gunion, and Jaffe {64]). Because of
the interference nature of this measurement, background terms of the J; type cannot contribute.
A light-cone analysis of this process is given by Kiskis [163].
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5.7. Theoretical expectations for correlations involving large p1 hadrons

Thus far, there has not yet been a great deal of theoretical work on inclusive correlations involv-
ing a large p; hadron in spite of the fact that this area should provide fertile ground for new
theoretical insights. The simple theoretical work which has been done suggests that correlations
are crucial in disentangling the underlying dynamic mechanisms. The preliminary data on correla-
tions have provided hints of unexpected phenomena. The opportunities for further progress here
are many.

One aspect of the problem of correlations which has apparently caused some misunderstanding
involves p; conservation. It is important to recall that the way in which transverse momentum is
conserved depends on the underlying dynamical mechanism so that it is not possible to isolate
momentum conservation as a separate kinematic effect. The following simple example will illu-
strate this point. Assume that the absolute square of the matrix element for an event with n +1
particles can be written in the form

|M(p1 Pn+1) |2 & f(p"[‘l) f(pT(nH)) . (571)

This is just the assumption of the “uncorrelated jet model” (Krzywicki [165]) or transverse cutoff
phase space which is often used as an example of a model without dynamical correlations. If we
then trigger on an event containing a large p particle, we have the constraint

“Print) = P1 =§IPT,~ (5.7.2)

If we neglect energy conservation this is the only source of correlations in transverse momentum
in the model. We can see, however, that the implications of the constraint depend on the form of
the f(p; ). If, for example, the f’s are gaussian

f(py;) = exp (—bpl)), (5.7.3)

the preferred way to satisfy (5.7.2) is for each of the n particles to be clustered around the point
pr/n. In contrast, if f(p;) has a simple power falloff the preferred configuration is where one
recoil particle has a large p; and the others are near the origin. We may therefore find something
like the phase space configuration found in hard collision models without assuming any under-
lying 2--2 hard process.

The fundamental test of an underlying 2—2 mechanism is, of course, the coplanarity of events
containing large transverse momentum particles. As discussed in 2.3, this follows from the assump-
tion that the constituents and the products of hadronic bremsstrahlung have limited transverse
momentum relative to the beam direction so that the probability functions, G, (x, p1), eq. (A.8),
in hard collision models are sharply peaked at small p. Gunion [134-136] has suggested that it is
consistent with the spirit of hard collision models that the probability functions themselves have
slow power-law-behavior in their high p tails so that the implied convolutions over p can give
significantly larger deviations from coplanarity than might otherwise be expected. It has not yet
been demonstrated, however, that the broad azimuthal correlations observed by the CCR group
can be obtained in this manner. Also, it detracts from the conceptual simplicity of hard scattering
models when all the mechanisms leading to large p are not explicitly isolated. One possibility is
that significant contributions from inclusive generalizations of multiple-scattering diagrams are
necessary to achieve the experimentally observed noncoplanarity of large p events. The azimuthal
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correlations give an indication that while the hard scattering models may be able to explain data
on large p, production, there remains a substantial gap in our understanding. Additional data is
needed.

An alternative way to approach the jet hypothesis which temporarily avoids confrontation with
the fact that there be significant noncoplanarity in the events is to look for evidence of the under-
lying hard collision in the quantum number structure of an event. The basic idea is that the quan-
tum numbers of the particles with large p; should, in some statistical sense, be related to the
quantum numbers of the constituents participating in the hard collision. For example, if we give
up the idea of a scale-invariant quark —quark cross section but assume that quark —quark scattering
is the dominant internal mechanism, we would predict that the large p hadrons should reflect
the quantum numbers of the valence quarks of the incident beams. For pp collisions, the observed
surplus of positive over negative particles at large p is in crude agreement with this idea.

At the level of two particle correlations, the quark--quark scattering mechanism does not lead
to significant correlations between the quantum numbers of one large p; jet and those of the jet
on the opposite side. There are only the overall constraints due to charge-conservation, etc. In
contrast, the constituent interchange model contains many possible internal hard-scattering
mechanisms. Yet, if the model is correct, by triggering on a large p; particle with definite quan-
tum numbers, experiments can select the particular mechanisms that dominate. This mechanism
must be consistent with the observed single particle spectrum. An example discussed by Newmeyer
and Sivers [190] consists of triggering an apparatus on a large p proton and looking in the
opposite hemisphere for p’s or p’s. If quark-scattering is the dominant mechanism, the opposite
hemisphere jet should contain the usual surplus of baryons over antibaryons expected in the frag-
mentation region of a quark. In the CIM, however, triggering on a large p baryon may select a
substantial contribution from the hard subprocess qq - Bq. Here an antiquark is balancing the
large p; of the baryon and we expect a surplus of antibaryons over baryons in the opposite hemi-
sphere jet. Simple model calculations for

R=P =P (5.7.4)
P +<(p)
where (p) is the average number of protons and (p) the average number of antiprotons in the
hemisphere opposite a large p proton are shown in fig. 5.7.1 as a function of the x of the trigger
particle. At FNAL energies, the subprocess q + qq = M + B may be important, predicting the
dominance of mesons opposite a triggered baryon.

Another example of the importance of quantum number constraints involves the production of
strange particles in the CIM. The tendency is for strangeness to be balanced between opposite
large p jets. In pp collisions of a large p,. meson where the leading irreducible mechanism is
gM — gM, the strangeness transfer components

um® - sK*, drt->sK', etc. (5.7.5)

lead to jets containing opposite strangeness. The process uK* -~ uK*, however, balances the
strangeness of a jet with a particle in the fragmentation region.

Another important question is whether correlations involving large p; hadrons are related to
the clustering properties of low p; events. In models such as the CIM the participating hadrons in
the subprocess can be resonances. Since energy-momentum constraints would imply a negative
correlation between two particles with large transverse momentum in the same direction if all
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Fig. 5.7.1. The asymmetry in baryons and antibaryons (5.7.4) in a jet opposite a high pT proton as calculated in the parton jet
model (PJM) and the constituent interchange model (CIM).

hadrons were produced singly, the observation of positive same side correlations is already suffi-
cient to guarantee that there is some clustering. It remains open whether it is intrinsically differ-
ent from the clustering observed among low p particles. For a review of cluster models, see Ranft
[203].

As emphasized by Bjorken [35] there are several relations between the invariant cross sections
for clusters and the invariant cross section for their decay products in the limit where angle or
rapidity is approximately conserved by the “soft” decay process. Let us assume that the invariant
cross section for the production of a cluster,

Ed3¢¢

d3

1
(P,5)= — F(PIPmax> Ocu) » (5.7.6)
b Pr
approximately exhibits power law scaling and assume a scaling law (see 5.5.2)

_d_x_c =Dy, o (x) (5.7.7
for the decay of the cluster into hadrons, where
x=Ipyl/Ip\ = phip§ (5.7.8)
since the angles are approximately the same. We then have
Edoh o1 fl e xm2 (3, HCM) Dy e(x). (5.7.9)
d’p Pt : X

where z = pil[pPa* . Because the effective power of n in (5.7.6) is usually quite large it is the be-
havior of Dh/c(x) near x = | which determines the form of the power law scaling for the decay
products
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1
Mz, 0em) = [ dxxm? e (% , eCM) Dy (%) . (5.7.10)

In interpreting the correlation function
E E,do/d’p,d°p,

(E,da/d’p)) (E, do/d3p,)

for two large p; hadrons in approximately the same direction we see that a large amount of the

pt dependence is due to the variation of the single particle distributions. If we assume that both

particles come from a cluster with momentum p =p, +p, and M?* = (p, +p,)* and then normalize
that invariant cross section to the invariant cross section for a single hadron at momentum p

Edo/d*p dm? dx d¢ _ R(E,do/d’p,) (E,do/d’p,)

(Edo/d*p), 20,,,(Eda/d*p)

with x = E | /E. As pointed out by J. Bjorken, if the cross section for producing a high p system
reflects strongly the total p; and is not a rapidly varying function of the internal variables, this
should be a slowly varying function of pr. An estimate of the function based on CCR data on
7°w® correlations is shown in fig. 5.7.2 as a function of p;. The fact that it is reasonably constant
supports the general assumptions.

The interpretation of correlations in specific models has only now begun. Uematsu [224] has
shown that the energy dependence of two particle distributions in the model of Berger and
Branson [27] is quite large. Formulas for two-particle correlations in the quark scattering model
are given by Ellis and Kislinger [110], and these can be readily generalized to other hard scatter-
ing models. .

The correlation in ,,, or the rapidity variable n = log tan (6., /2) between opposite side par-
ticles reflects both the angular dependence of the active subprocess and the distribution of momen-
tum in Ga/A(x), Gb,B(x), GC/c(x), and GD/d(x). A subprocess with an isotropic distribution is
already ruled out by the data, since it produces much too narrow an angular correlation, compared
to the An ~ 3.5 correlation width measured by the Pisa—Stony Brook group at /s = 52 GeV with
one particle at 6y = 90° and p, > 3 GeV. Angular dependences such as do/dr ~ =% or «™* which
might be expected in modified gluon exchange models, or the forms da/d¢ ~ 1/su?, u/s®, 1/s%u?,
which are possible for q + 7 > q + 7 are not inconsistent with the Pisa—Stony Brook data measured

(5.7.11)

= Oinel

Fig. 5.7.2. The ratio of invariant cross sections for a pion pair and a single pion as a function of py.
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at xp ~ 0.1 since the data in this region are sensitive to the small-x behavior of the structure func-
tions. However, at larger x, the predicted differences between the various models for do/ds are
very distinct. Calculations valid at large x, have been given by Ellis [108]. Multiparticle correla-
tions also should be able to discriminate between these models.

Recent experiments have also determined the correlation in n as a function of the CM angle of
the detected large p particle. If two different distributions G, (x) and Gy, z(x) occur, as in
m + q, then the C.M. tends to be ““thrown’ in the direction of the “heavier’ of the particles a and
b. In the case of an isotropic do/d¢, one expects events to have an “‘antiback-to-back” correlation,
i.e., the particles on the opposite side of the detected high p, particle should have the same sign
oprM. However, if do/dt (a+ b > ¢ + d) is forward or backward peaked, then the above effect
can be negated, and a back-to-back correlation can occur. Future measurements of these correla-
tions, especially at higher momentum transfers and with complete momentum determination will
be very useful discriminants of the models. Generally, the features of the correlations are expected
to sharpen as p increases. More extensive computations of the angular distributions and fits to
the inclusive spectra are being carried out by Raitio and Ringland [201].

5.8. The production of new particles and large p+

A very intriguing question arises concerning whether a large fraction ot the observed high-
transverse-momentum hadrons could be related to the production of new particles. Lederman
[179] has advanced the speculation that essentially all the hadrons produced in excess of an
exp (—6p) extrapolation are the decay products of heavy particles related to the ¥(3100) and
¥ (3700) observed at SPEAR (Augustin et al. [18]) and at BNL (Aubert et al. [17]).

In support of this view one can note that the SPEAR data suggest the existence of a threshold
at /s = 3—4 GeV resulting in the approximate doubling of the ratio o(e*e~ - hadrons)/
o(e*e™ » u*u™). This could be translated into an effective threshold for the production of
hadrons at large p; in pp collisions. Except perhaps for the associated multiplicities of the Argo
Spectrometer group (Ramanauskas et al. [202]) there is as yet no evidence for this type of thresh-
old structure but it may emerge in careful analysis of new data. Further support of the idea can
be found in the fact that

1l

[T

Y apsypreer,  a=2-3 (5.8.1)
(Knapp et al. [164]). This corresponds to the general picture of the growing importance of heavy
particles at large ¢ and is consistent with the idea that the {’s are more pointlike than ordinary

hadrons.
As discussed in section 3, the most important constraint on this suggestion is the observed smalil
and constant value of the ratio

p/m=10"*%, (5.8.2)

in pp collisions. If the leptonic/nonleptonic decay ratios of the majority of these new particles is
the same as observed for the Y’s

'y - u*u™)/T (Y - hadrons) = 0.1, (5.8.3)

then very few of the large p hadrons can be their decay products.
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It may be that the hard subprocess in the constituent pictures we have been discussing can be
effectively replaced by a sum over high-mass low-spin resonances in the direct- and crossed-channel.
This new type of duality could have many implications and could perhaps lead to a correction
between events with a few high p hadrons and those with a large multiplicity of low p; hadrons.

It should be noted that the production of {’s in pp collisions is suppressed in heavy quark
models by the operation of “Zweig’s rule”” which forbids a produced quark to end up in the same
hadron as its antiquark. Thus the associated production of particles which carry the new quarks
bound to the usual quarks should be favored. However, in those events in which there is a ¢,
arguments can be made (Sivers [217]) which indicate that there should also usually be a pair of
heavy hadrons. Moreover there should be local balancing in rapidity of the number of new heavy
quarks so that the momentum of a high p; ¥ should be balanced by a recoil system containing
the new hadrons.

Even if there is no direct connection between the existence of the new particle and the unex-
pected yeild of high p; hadrons, it is possible that large p; physics can illuminate some of the
properties of the y’s. For example, a possible test of whether the { is an elementary spin-one
particle or a composite qq system involves the comparison of fixed-angle scaling laws for yp - yp
and yp - Yp or inclusive scaling laws for yp = v + anything and yp - v + anything. Note that the
observation of aJ =0 fixed pole in ¢ photoproduction,

(—‘};" (yp—=> yp) xsT2 (1), (5.8.4)

would be dramatic proof of the elementarity of the new state since Brodsky, Close and Gunion
[61] have shown that fixed-pole behavior is impossible in the photoproduction of composite
systems. Whether or not these kinds of tests on the nature of the y are feasible, in view of the
small observed cross sections, is difficult to say — the simple examples discussed here involve
extremely small effects.

The production of heavy mass particles can, in principle, give us the same type of dynamical
information sought in large p; processes. An important mechanism for the production of heavy
hadrons should be q@ ~ HH so that the dynamics of the process may not be too different from
qq -~ K~ K*. This may be reflected in the scaling laws for the production processes. The produc-
tion of heavy particles at large transverse momentum offers an opportunity to study how the
parameter m?, in the formula

Ed% f(e)
d*p  (pr+m?

(5.8.5)

W

depends on the internal masses (quark masses or hadron masses) in the problem. The production
of new quantum numbers implies the existence, on the average, of a greater number of spectators,
so the production of heavy hadrons should be dominated by the small x kinematic region.
Photon, lepton and meson beams offer the best opportunity for isolating the presence of the new
particles because of the improved signal-to-noise ratio due to the presence of antiquarks with
large x.

It is possible to dimensionally analyze the production of heavy mass systems in much the same
way as in large p inclusive reactions. Counting rules in the CIM for lepton pair production have
been derived by Sachrajda and Blankenbecler [206] which predict the behavior in mass (9 ) and
threshold (1— 9?/s) for any incident beam and choice of basic process. These include both anni-



104 D. Sivers et al., Large transverse momentum processes

hilation (Drell—Yan) and bremsstrahlung type contributions. The inclusive--exclusive connection
was also discussed. It will be very helpful to have data of sufficient quality and quantity so that an
effective power analysis can be performed. This would help distinguish between the possible basic
processes that can contribute.

The presence of heavy narrow resonances offers the possibility of many interesting effects in
inclusive channels. It is important to note the possibility that the anomalous energy behavior for
large-angle pp elastic scattering between p; ,p of 5 and 6 GeV/c (Buran et al. [65]) may be due to
the effect of the Y (3700) at the upper energy, v/s = 3.68. The possibility that the “Ericson fluctu-
ations” observed by Schmidt et al. [210] may really be due to a new heavy baryon coupled weakly
to n* p is also worth considering.

The discovery of the  and ' are important in that they demonstrated both the limitations
and the virtues of current theoretical approaches to hadronic phenomena. For example, we now
can only expect R = g(e*e~ > hadrons)/o(e*e™ » u*u™) to become asymptotic at some energy
regime considerably above the masses of the new particles. Efforts to explain why this ratio did
not agree with simple quark model predictions in the lower energy regime did not prove too illu-
minating. We must keep in mind that the simple quark model rules for large p processes discussed
here may also fail in such a way as to unmask this new dynamics. If this “thawing” is due to the
opening up of new degrees of freedom, they can be included in the counting rules in an obvious
manner. If not, then we will be learning about a new type of hadronic matter.

6. Summary and conclusions

The detailed study of the properties of large-transverse-momentum phenomena is now just
beginning and much more experimental and theoretical work will be required before definitive
conclusions are possible. It does seem appropriate, however, to make the following preliminary
observations.

The kinematic regime in which large p; data is being collected is characterized by an invariant
single particle inclusive cross section which displays a falloff somewhere between exp (—6p) and
(pT)"‘. These two predictions may be considered extremes, the first possibly valid at low p and
the other possibly valid at some ultra-high p;. We do not completely understand from the quark
parton picture why there is no evidence for a (p1)~* component in the present kinematic regime
although there are speculations, based on models for quark binding, why such a term may be
absent or suppressed, see section 4.

The available data on single particle inclusives are observed to be smooth over a wide range of
pr and /s. There appears to be no sharp boundary between low p; and high p regimes or
between high energy and low energy dynamical mechanisms. However, we cannot be completely
satisfied with this observation due to the presence of large gaps in the coverage of the high p,
intermediate energy range. Data from SLAC, BNL, CERN-PS and Serpukhov are needed to test
for this smoothness with greater precision. Data at these energies and x ~ 1 can also explore
directly the connection between inclusive and exclusive crdss sections.

The jet hypothesis, i.e., the assumption of an underlying hard scattering mechanism, can most
easily be tested by looking at the complete phase-space structure of individual events containing
a large p trigger. This type of data can give basic information on the internal dynamics. For
example, there is speculation that the inclusive “jet cross section”
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3 . T \4
Ejet dO/d (pje') f(xjet)/(pjet) ’

may display scale invariance, where Pjer = Z,p; is the sum of the momenta of all particles in a
given event with p1, 2 (p1). This cross section can be measured directly, e.g., in hadronic calorime-
ter experiments, and the speculation should be tested. The measurements of associated multiplici-
ties and correlations at the ISR support the idea of some sort of broad jet structure. The results of
the ARGO spectrometer measurements at BNL displaying a sharp rise in the associated multiplicity
as a function of p; constitute, at this time, the sole exception to the rule that physical observables
extrapolate smoothly between small p; and large py.

Hard scattering models are consistent with a large body of data. However, the observed lack of
coplanarity in the two particle inclusive data provides an important challenge to this point of view.
More data on azimuthal correlations, with different particles and in different kinematic ranges, is
obviously in order. It is particularly interesting to check whether the coplanarity distribution
changes at higher values of x . Comparisons with correlations observed from lepton and photon
induced reactions will also be significant. It is also an interesting theoretical problem to see
whether hard scattering models can be generalized in some way to avoid the prediction of co-
planarity. This would be, in some sense, a retreat for this model but it could be balanced against
other successes. The inclusion of “hard” 2--3 internal processes might be an interesting exercise.

For completeness we also mention other important experimental constraints. Measurements
of the angular dependence of inclusive reactions are of obvious importance in separating the de-
pendence of cross sections on the distribution functions G, (x) and Gy, 5(x) and the angular
dependence of the basic subprocesses. Correlation measurements between two or more large
transverse momentum particles and their angular dependence will further constrain the form of
the internal scattering cross sections. The distribution of momentum in the recoil system in prin-
ciple can distinguish between subprocesses involving the production of jets, or systems of fixed
mass.

Beams of ¥’s, #’s, K’s and p’s are interesting from the quark model framework because they
provide more antiquarks with a large fraction of the incident momentum. In general photon and
meson beams have a larger fraction of their momentum available for high x; processes compared
to baryons. So far all large p; experiments have been done with incident protons, but changing
beams can have a dramatic effect on the large p; cross sections for particles involving antiquarks.
Photon experiments are valuable because v’s couple with approximately equal strength to all
varieties of constituents and can provide a close connection with electroproduction data. The
J =0 fixed pole in Compton scattering furnishes a real test for the pointlike coupling of the photon
to some internal constituent. Unified planning of experiments with these new beams is necessary
to provide related measurements over a wide kinematic regime.

The flow of quantum numbers in an event containing a large p; particle provides a good discri-
minant for different models of the internal dynamics. The quark models provide a general con-
straints on the quantum numbers of the irreducible hard scattering process and specific models
have definite predictions. Measurements involving the differences between different beam par-
ticles, detected particles, and n or p targets are sensitive to the valence and Regge components of
the distribution functions. The most critical measurements of quantum flow involve quantum
number correlations. For example, in the CIM model for production in pp collisions, the detec-
tion of a K~ at sufficiently large x signals the presence of a K* in the opposite hemisphere.
However, for different internal processes strangeness of a large py K* can be balanced by a K~
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by A’s or Z’s in the fragmentation region or by A’s and X’s in the opposite jet. The study of corre-
lations with particle identification in experiments involving a variety of beams and targets is
obviously an important experimental goal. The use of quantum number flow to identify the
important internal subprocesses can serve as an important consistency check on the identification
of the subprocesses by “‘effective power” analysis.

The effective powers discussed in section 5.6 can provide an important phenomenological tool.
They are quantities which can summarize concisely the systematic trends of the data and which
can be extracted simply from models. In combination with the quark model and constituent
counting they provide important clues to the important internal mechanisms. Analysis of data
from FNAL and ISR results in plateaus in N, and F, g at values consistent with expectations in
the CIM. Particles and antiparticles are found to have similar N,g’s but, as expected, display quite
different F’s. The correlation of N ¢ and F,g with the quantum numbers of the detected par-
ticles supports the general features of the quark model. The observation of peaks in € = M ?/s for
the difference between particle and antiparticle cross sections provides supplementary evidence
of a small number of internal constituents, each with a finite fraction of the hadron’s momentum.
Application of this type of analysis to new data over a wide range of energies, different angles and
smaller € values can help probe more deeply into the basic dynamics. We also emphasize that appli-
cations of the effective power analysis can greatly clarify the physics of the deep inelastic electro-
magnetic processes.

The use of nuclear targets in high p, experiments has uncovered an interesting unexplained
feature incidental to the original objectives of the experiments. The dependence of the data for
meson production on the nuclear target type is found to vary as A!-! for p; > 3 GeV/c. This is
distinct from both the coherent 4%3 and the incoherent A! dependence expected. The explanation
of this fact is uncertain although there are many theoretical suggestions. More experiments on
nuclear targets at different values of p; and /s are obviously appropriate. The structure of the
recoil system for high p; production on various nuclear targets can clarify the role of double
scattering contributions.

The expectations for fireball models as a general description of large p processes has not been
fully exploited. If parton models run into serious snags the idea that fireball approaches can be,
in some sense, supplementary to hard scattering approaches might provide new insight into the
problems.

In view of the evidence from SPEAR of scaling violations associated with the production of
Y’s and/or heavy charmed particles, the possibility of a connection between large p; production
and heavy particle production should be explored fully. There may be an enriched sample of new
heavy particles in events in which there is a large p hadron. Certain of the large p; particles (e.g.
direct muons) may come from the decay of new types of particles. From a more general view, the
dynamics underlying the production of massive particles may be related in structure and form to
the dynamics of large p,. Constituent models provide a framework where this type of possible
connection can be easily visualized (see section 5.8).

In the area of exclusive experiments, improved high p; data can probe several features of the
strong interactions. An important test for the finite compositeness of hadrons is to check whether
Regge trajectories asymptote to negative integers or continue to fall at large | 7|. The present data
is not sufficient to decide this point. It is also important to test for fixed angle scaling, do/dt ~
s~V £(6), in 2 > 2 processes with more data. Measurements of the ratios of the differential cross
sections yB > yB: yB » 7B : 7B > #B : BB » BB for a fixed range of 6, would provide an impor-



D. Sivers et al., Large transverse momentum processes 107

tant check on the relative complexity of photons, mesons, and baryons. Present data agree with
simple constituent counting laws but also display many features (zero structure, polarization, etc.)
which are most easily understood in geometric terms. Data do not, however, display the shrinkage
(0 ~ 0(Apy Ab)) implied by the asymptotic validity of geometric constraints. It is therefore an
important question whether the geometrical features survive at higher energies. The search for
Ericson fluctuations is also crucial in deciding the important question of the existence of heavy
resonances.

It is also important to check the scaling laws for multiparticle exclusive processes for fixed
invariant ratios such as ep > epmw, e*e™ - nm, pp > nm, etc., and predictions for fixed angle cross
sections related by crossing: pp = pp : pp = pp, PP = 7% : Tp > 7P, etc. Another intriguing ques-
tion is whether nuclear form factors and distribution functions can be predicted from constituent
counting rules.

Most models that have been discussed in the text have been formulated to attempt to under-
stand isolated features of large p, events. It is usually very difficult to make other predictions in
these models without which their overall validity cannot be tested. In contrast, the CIM models
provides a unified framework to discuss exclusive reactions and inclusive processes over the entire
Peyrou plot. The model is exceedingly simple in all these cases. It is consistent with the ideas
tested in deep inelastic lepton scattering and hence provides a bridge between photon and hadronic
processes.

At small momentum transfers, the model converts smoothly to the usual Regge - purely
hadronic description of exclusive and inclusive reactions. In a sense the CIM gives a simple pre-
scription for mapping duality diagrams to dynamics at short distances.

The predictions of the CIM can be discussed at two levels. The first level involves the general
form of the cross sections and their dependence on specific kinematic variables. Thus, the exclusive
differential cross sections are predicted to factorize at large angles in the form g(s) (8), and the
form of Regge trajectories and residue functions are prescribed. At a more detailed level, the
model predicts the specific functions involved for any process, and in the exclusive scattering case,
g(s)~ s~V where N is fixed by quark counting, and the function f(8) is specified. Similar state-
ments hold in the inclusive case.

Within the CIM framework, one must still specify the particular composite nature of the hadrons.
For example, the nucleon can be considered to be a bound state of three equivalent quarks or of
a quark and a core. These alternatives give different predictions in general for nucleon—-nucleon
scattering (N=10 or 12 respectively). All of the constituent counting rules given in the text for
inclusive scattering are based on the former model of the nucleon but the latter can be easily dis-
cussed. Experimental information is needed to decide between these possibilities.

Even though alternative models can do as well in describing some features of the data, the fact
that there appear to be no violations of CIM predictions for form factors and exclusive or inclusive
scattering is significant.

In spite of the empirical sucess of the CIM at large p; and parton model ideas in deep electro-
magnetic scattering, there are important conceptual obstacles associated with the fact that quarks
are assumed to be permanently bound. This must affect the treatment of strong interactions at
some level, but just where and how this will occur depends on the unknown binding mechanism.
It is probably necessary to understand this binding before the final state configurations in inclu-
sive reactions can be computed. Theoretical attempts in this direction have only scratched the
- surface.
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Appendix A. Derivation of the hard scattering model

All of the predictions of the various hard-scattering and parton models for large-transverse-
momentum inclusive processes depend on the validity of an underlying probabilistic formula. In
this appendix we derive the central equation for hadronic processes in a form sufficiently general
to allow for transverse momentum fluctuations. Hard scattering model for the reaction AB > CX
are based on a decomposition of the form indicated in fig. 1.5 where the final state, X, consists
of contributions of particles and clusters from p(Aa), p(Bb), p(Cc) and p(d). We write

1
2E,2Eg|V,— Vgl

with the assumed decomposition

oapD)  oR(pY)  GEPY) ,

do(AB > CX) = IMygcx2dp (A.1)

Mas-cx!*= Mypscal” s A2
AB CXI ab,cd (pg_m:)z (pg __mt?;)Z (p§~~m3)2 ab Cd| ( )
and
¢*pe d*p az d*p gy :
dp =__ 6(+)( 2”)’}’12) a 6(+)(p25*m2-) _ PBb (S(+)( 2 m2_)
(2m)? c e 2m)3 A Al (2m)? Pyb Bb
d*pe, (A.3)
X o 8M) (pE,— mk,) 8 (ph—m3)2m .

The absence of coherence in the decomposition can be physically motivated under the assumption
that a,b are distinct “‘localized” constituents of A, B respectively. The ¢’s are the covariant vertex
functions for one leg off-mass-shell. In the case of spin, the appropriate spin sums and traces are
assumed. From the form of (A.2) and (A.3), we see that we are assuming that a,b,c,d have either
well defined masses (for internal hadrons) or effective masses (for quarks, etc.). These masses are
later assumed to be small in some sense so that, for example, we do not include in (A.2) an inter-
nal 2 - 3 process where the effective mass of the system represented by d can be arbitrarily large.
It is convenient to choose the following parametrization

PO =pytoy=xpp)s Por “kgr.  Kpy'Pe=0. (A4)
The mass-shell condition for py — p,, then gives
(pg—py)? = mpg (A.5)

and one ea.sily finds

(A.6)

2 2 g2 2
kiptmes ka+mb]
3

2 2 = 2
—mg=x, | Mg —
Py b "[ B T—x, Xy
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and
d*ppi (2 2 = d’ky, ,__dx,
f(2”)3 8 (pBB_mBE)_ f(27'r)3 f 2(1 xb) (A7)

The limits on x,, ensure that pg; is timelike and p, is spacelike. We may then define the distribu-
tion

1 Xp ¢5(py)
@ny? 2(0=xp) (p2—m2)?’
which is the probability for particle b to have fractional momentum x, = py /p}, along the direction
of particle B plus a transverse momentum k, orthogonal to py. The spectral sum over mpgg is
understood in (A. 8) The behavior G b/B &t xp, ~ 0 is controlled by the behavior of the spectral
integral at large m%; which is, in turn, given by the high-s behavior of ogg(s). The existence of
G, p implies that b can be “found” in the wave function of particle B and its use in the hard
scattering formula means that it makes sense physically to distinguish between the formation of
b in this way and the subsequent interactions of this off-mass-shell “constituent”.

Similarly, we can define Ga/A(kTa,xa) for the distribution of momenta carried by p, in A where,
again, p, is spacelike. Finally, we also define

(A.8)

Goplkrpsxp) =

P =yp&,  Pre=YePrc ¥ ke, (A.9)

where the muass shell condition for p, — p implies
s g [ s o Koetme, Kietme? (A.10)

P —m =Y. | me yc_’l Ve J’ :

and
d*pe. d?kpc
M (pL —mi) = A.ll

v Qnyp | PEeT e J Qny ; f 2(y —1) a1
If we define x_ =y, then the function

~ 1 1 ¢2(p2)

Geje(xeskpe) = € e (A.12)

Qm)? 267 =1) (p2—m2)?
gives the probability, normalized to the multiplicity, for particle C to have a fraction x_ of the
momentum along the direction of the timelike particle ¢ and a component k. normal to this
direction. The tilde indicates the parent particle c is timelike.

Without further approximation we may then write eq. (A.1) in the form

do(AB=CX) _ 3 fdzknfl d, [, [ v, [k [ (25) (A13)
0 o " Xc .

d3pC/Ec ab,cd

pd 1 1 5(+)(p§—m§)
X Gy alkgasx,) Gy gy Xp) Gojolk ,xc)( —— )( )IM Lgl? 2 4
a/A\YT a b/B\WTbhs*b Cle\"TC X5 - = IVA_VBI ab—cd (27!’)3

The next step is to assume that the off-shell continuations in the integrand of (A.13) are not
important so that we can identify
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| ] 1 s' da(ab - cd)

2 - = M . 2 -~ _
Xy %y 26, 2y Va—Vgl Mab=al ST T e (A.14)
and
Sey(pi—m) =8("+1'+tu' —m?—m?—m? - m?)
where
"= (patpy) = X, X5 — kpy kg
' 2 Xa
£= (pype) = 20+ kg (A.15)
o
, X
u'=(py—p)* = —u+t Kty K1c
xC
when the masses m?2, m2, m2, m? can be neglected.
The next assumption is that the structure functions
Gua() = [d%ky G, jphy,x) (A.16)
exist. Note, from (A.8) and (A.12) that the integrals converge even for ¢ = constant.
We then write, with s', ' > k2
doAB=>CX) . 33 Fu fae [P )G G s+ S 99 o
TPnl, S ied L ]S O ) xS g 60 <)
(A.17)

Comparing (A.8) and (A.12) assuming that ¢2(p2) can be defined for both spacelike and timelike
arguments, we get '

Geyelx) = =x G (1/3) (A.18)
which is the crossing relation discussed in section 4. This result, combined with
Gec () = G yelx) (A.19)

gives the correct crossing behavior for AB - CX to continue to CA - BX. In the case where ¢ and
C consist of a boson and a fermion, there is an extra sign reversal in (A.18).

Appendix B, Relation betweem calculational techniques

An often perplexing feature of theoretical papers on large transverse momentum is the number
of diverse, yet equivalent calculational techniques. Various authors use Bethe—Salpeter, Fock-
space methods, or integral representations of scattering amplitudes to represent bound state am-
plitudes, and either Sudakov variables, light-cone variables, infinite momentum frame parametriza-
tions, or standard Feynman variables to parametrize integrals. In this appendix we will discuss
some of the interrelations among these techniques. Further details may be found in a paper by
M. Schmidt [211] (see also Brodsky, Close and Gunion [61]).
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Fig. B.1. Decomposition of the form factor.

A convenient illustration of the various methods is the calculation of hadronic form factors,
particularly the normalization integral since it provides a simple method to define the structure
function and to relate it to a quark parton scattering amplitude.

The form factor (assuming only spinless particles are involved) corresponding to fig. B.1a is
defined by

Q2p+qFg®) = fd4ki GktqyT(p,ktq>ptq,b)
Qu)* (K2—-M*+ie)(k+q)* —M* +ie
The relation to the off-shell scattering amplitude is indicated in fig. B 1b. Self energy insertions
can also be included readily in this model. :
Although the standard Feynman parametrization is useful for specific forms for 7, in general
it is more useful to try to reduce the k-integration. Among the many possible parametrization are

(B.1)

(a) Sudakov: k=xp+yq+n, n-gq=n-p=0. (B.2)

k2 +k2
(b) Light-cone: k* = k®+ k3 =x(p°+p3), k= =k k3= Tk+ ’ (B.3)

where p is taken in the z-direction and ¢* = 0.
(c) Infinite momentum: one chooses
k2 + k2

sk xP) (B.4)

2
(P+’2”P OT,P), k=(xP+

where
P2> M? k2, k% .

Note that the light cone parametrization is exactly equivalent to the choice of frame

2 2 k2+ k2 k2
p= (P+{4”P,0T,P—{4'LP), k=(xP+TxP—T,kT,xP—4—x;5), (B.5)
where P may now be chosen arbitrarily. In fact Y = log (2P/M) is the rapidity of p relative to the
rest frame 2P = M. Also, y = logx is the rapidity of k relative to p. Note that y is often a useful
variable, especially in multiperipheral calculations making the phase space integral f dx/x = [ dy
uniform in rapidity. If P - e, we have exactly the infinite momentum frame, where x = k,/p,
becomes the fractional longitudinal momentum.

In order to proceed further, it is convenient to assume that 7 can be written as a sum over its
u-channel singularities (see fig. B.1¢). Thus
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0, (k*) o, [(k+q)?] R
do“ .
(p~k)2 . 02
This can be done in various ways; for example by assuming a dispersion relation, or choosing a
suitable integral representation. We then have for any of the variable choices (b) <« (d),

T= [pa* (B.6)

[a*k= [a(p—k)= [dk, fﬁ% [dip- 12, (B.7)
with
K2 m2=xStky,x),  (k+q)® - m?=x5=xS(ky +(1-X)qp,x), (B.8)

and we have defined

Sthy, )= a2 - Kt Kates
X) = — T (B.9)

If x > 0 or x < 1, then all of the singularities in (p — k)? are in the upper half plane and there is
no contribution. For 0 < x < 1, we can close the contour in the lower half plane and pick up the
(p — k)?* — ¢? pole, and obtain (using the p, + p, component)

, 0,(x,8) ¢,(x,5) ,

d2k 1
2y = T dx )
F(g*) f(zﬁ)3 Of T ¥ Jdo - (%) . (B.10)

xS

For a given single particle contribution to p(6?), ¢, can be identified with the Bethe—Salpeter
wavefunction with one-leg on shell

lim (p—k)? -1 Yk? (1-k)?) = ¢, (k*) . (B.11)

(p—k)2 —ol=0

Alternately, we can use Fock space wavefunctions in the P - o frame, and identify

(xS)
Gy (hpyx) = — (B.12)

Parallel results are also obtained using the Sudakov variables by using the (p — k)? pole to do the
y integrations (Landshoff and Polkinghorne [173]).
Since F(0) = 1, we can define

d%k 2(xS
F(x)=G,,(x) = f2(1—_ —)1(2)3 do? d):(;)j X, (B.13)
-x) (2w x

as the normalized fractional momentum distribution. Note that x can be interpreted variously
according to the parametrization (a) - (d) used above. It is easy to see that the ““handbag”
diagram, fig. B.1d, for forward virtual Compton scattering gives

VW, 00) = 23 N2xf,() ], o 0sey > (B.14)

where A, is the constituent charge.
Finally, we can also identify ¢2(k?) with the u-channel discontinuity of the virtual forward
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scattering amplitude T(k, p = k, p). Thus we have
Im T(x, S, d?%)

vW,(x) = xZ)Aa T x)f_&;)‘i [do? ————-—, (B.15)

which is the important relation obtained by Landshoff and Polkinghorne [172—174]. It is easy
to see that if 6;, ~ s*~!, & >0, then Im T ~ (0?)* and »W,(x) ~ x' "% at x - 0.

Appendix C. Calculations of wide-angle scattering amplitudes

One of the simplest techniques for calculating scattering amplitudes for composite systems is
the “partition” method; i.e., the effective replacement of each hadron by constituents carrying
finite fractions of the hadronic momentum. This is justified as follows: by definition the hadronic
amplitude is given by the convolution of hadronic wave functions and n-particle amplitude inte-
grated over relative momentum k*(i)

Myip-cep f‘l’T \b};g% lPAs‘J/Bs Hd4 (C.1)

Assuming finite hadronic binding; i.e., finite Bethe-Salpeter wavefunctions at relative x* = 0, the
leading contribution at large ¢ and u can be obtained explicitly by iterating the kernel where ever
large relative momentum are required. Thus all the wavefunctions are evaluated in their natural
domain of near on-shell constituents, e.g. p, =x, P, + k,,with0<x, <1, k,-p =0, and ki small,
and all of the hard momenta is exchanged within M.

Some representative contributions to M, for meson—meson scattering are shown in fig. C.1.
(Note that all of these contributions except (a) occur in positronium—positronium scattering.)

It is easy to check that each of the graphs (a)--(d) scale at fixed 6, as s72 in any renormal-
izable theory. In these Born graphs, only the off-shell quark propagators need be counted to ob-
tain the scaling behavior, as in ¢* theory; otherwise the gluon propagator fall-off is compensated

P P "o P
A -
ﬂ ("%)Pa (=%c)Pe
Pg o *bPg *4Po
(I-xp)Pg (=%g)Pp
= i + }f 4ot % + o +
(a) (b) (c) (d) (e)
t-channel u-channel ut-interchange st-interchange double scattering
exchange exchange

Fig. C.1. Diagrams which contribute to M,,.
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by the vertex couplings -- from the convection current for spinless quarks or from the trace in the
spin 5 case. Additional, but finite, powers of log s factors appear from the x ~ 1 integrations, cor-
responding to degeneracy of routings of the large momentum transfer.

Diagram (a) is the prototype of the Wu—Yang gluon exchange model, which has been general-
ized by Abarbanel, Drell and Gilman [1], Fried, Gaisser and Kirby [126,129, 130], and by Horn
and Moshe [148]. Following the latter authors, we can generalize such contributions to the form

Mpigocen = Fac(t) Mgy (s, 1) Fypp(2) + crossing contributions . (C.2)

If vector or axial-vector gluon exchanges are involved then this gives Regge behavior M ~ s*p(¢)
(s> 1) with a(z) ~ 1 for all t. The phenomenological difficulties with this form are reviewed in
section 5. Note that fig. C.1b gives a contribution ~ 72; i.e., a(t) = 0, but is not usually taken
into account in such models. We also emphasize that if gluon exchange is allowed in a composite
model, then the Landshoff [170] contributions which we discuss below and in section 4.3 domi-
nate the fixed angle amplitude so the above theories are the most consistent representation of the
asymptotic amplitude. (Note, however, that in some elementary vector gluon field theory models,
the Landshoff contributions cancel, see Halliday, Huskins and Sachrajda {140, 141].) Fig. C.le
contains the double-scattering (Landshoff) contribution. The matrix element scales as is~*?2, and
is dominated by the on mass shell region with 1 —x, ~ x, ~ 1 — x. ~ x4. In general, higher order
loop contributions to M,, introduce additional powers of log s in each order in perturbation theory.
In accordance with Bjorken scaling, or from the various theoretical arguments advanced in section
4, it is assumed that these logarithms do not accumulate to change the overall power indicated by
the lowest order contributions.

Diagrams (c) and (d) are the prototypes of the constituent interchange model, giving contribu-
tions to meson—meson scattering that survive even if gluon exchange between quarks of different
hadrons are excluded. Independent of the gluon or constituent spin, one obtains the contributions

11 11
My ~ ut’ Mgy~ 1 (C.3)
(modulo logarithms from the x ~ 1 integrations), and thus a Regge contribution at « = —1. A
natural generalization of this result for M(C) to meson—baryon and baryon--baryon scattering,

as adopted in the original CIM paper is

MATB=CD = 4 F, (u) Fo() Fy(2) . C4)

This form can be justified if each composite system is effectively treated as a bound state of two
particles; in particular, the proton must be regarded as a quark + core (or diquark) bound state.
Using eq. (C.4) we have the interchange model prediction

11 11 .
MMB—'MBNQE;;-*-B ;t—z-, 1.e.a([)=>*1 , (CS)
for the quark and antiquark contributions and

11 .
Mgg .pp ™~ u_3 ;5 ; ie,a(t)= -3, (C.6)
for the quark interchange contribution to baryon—baryon scattering in the core model. Inclusion
of spin changes this result slightly. The proton core model is attractive in that (1) it can naturally
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account for the anomalous behavior of vW8/vW? at x > 1, 1(2) the spectroscopy of baryon
resonances seems to favor a diquark—quark model. The diquark state is predicted to be quasi-
stable in color models (see e.g. Capps [70]). Further discussion of the use of the core model has
been given by Gunion [134, 135]. Note that (C.6) predicts do/ds (pp - pp) ~ s~ **(1—cos*8 )"
with n ~ 6 which gives a good representation of the large angle data. The prediction

da/dt (K'p->K*'p) ~ sTS(l —cosf) " *(1+cosf) 1, (C.7)

from eq. (C.5) (including an extra factor of (1+cosf)! from a helicity-conservation) due to u-quark
interchange gives an excellent representation of the K*p data. The core model can be simulated
using a super-renormalizable field theory model for the proton couplings.

An even more convenient generalization of (C.4) for the interchange model which can be used
for the case of a three quark baryon system for a ut graph is

Mﬁ?g—»cﬂ)(ll, t) =Mq+A—>q+A(ua t) FBD([) 3 (C-8)

where Fjy () is assumed to be the most convergent form factor. The quark amplitude is evaluated
at the appropriate kinematics. This form, which easily follows from the structure of fig. C.1, is
discussed in detail in section 5.1 and is consistent with the dimensional counting rules for a three
quark wave function. Logarithms from the x ~ 1 integration are automatically included.

The fact that different results for the CIM model can be obtained for different choices of the
hadronic wavefunction was emphasized by Fishbane and Muzinich [121]. It is easy to check that
this ambiguity only occurs for baryon—baryon scattering and is resolved once the basic quark-core
or three quark structure is assumed.

Appendix D. Alternative theories based on parton interchange

During the past year, several other models of large angle scattering processes based on duality
or “‘urbaryon’ (i.e.: quark) rearrangement diagrams have been developed. The essential forms and
assumptions used in these models are similar to those of the CIM, although there are important
differences.

An interesting though heuristic formula for large angle two body exclusive processes A+ B~ C+D
has been proposed by Kinoshita and his coworkers [161, 162]: for large ¢ and u they propose

1 1 | o

~ . =

1
Vs NN LN

o

(1 —2)2"2NT(1+2)>7"U | (D.1)

|

o

where n is the total number of “‘bonds” connecting the hadrons in the ¢-channel (i.e., the total
number of quark lines connecting A to C or B to D), etc. The overall power law agrees with di-
mensional counting rule N =N, + Ny + N + N, — 2. Although the angular dependence is derived
heuristically, its form reflects the tendency of the valence quarks to persist in their direction of
motion. In terms of Regge behavior, for s > — ¢, one has

aeff(t) =1- (ns+nu) 7(_” s (D.2)

where y(—¢) - 1 for large negative ¢. Unlike eq. (C.5) a(—<°) only depends on the number of ex-
changed quarks. Note, also that eq. (D.1) is no¢ in general consistent with crossing symmetry. For
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pp scattering, single quark interchange gives (ng =0, ny =4, ny = 2)

Sm%tg~(l—z)‘6(l+z)”2, a(t) > —1, (D.3)
and double quark interchange (as required by ¢—u crossing)
510 g—;’~ (1-2)2(142)°,  a()> -3, (D.4)

compared with a(#) > —2 for the CIM using eq. (5.4.2). A novel feature of eq.(D.1) is that the
“diffractive” term with zero quark exchange (ng=0, ny =6, ny = 0) gives automatically an
aeee(f) =1 contribution. Kinoshita and Myozyo [161] use the sum of the above three contributions
(interference and spin effects, and the u-channel diffractive term are ignored) to give a fairly good
parametrization of the pp data. The small t dependence of y(¢) can be chosen to give backward
peaks (which vanish in the fixed-angle scattering limit) in K~ p and p~p elastic reactions. A troub-
ling feature of the suggested rule is that all n;; = 0 contributions vanish strongly in the backward
direction in the scaling limit.

An alternative approach to the calculation of « baryon rearrangement diagrams is given by
Igarashi, Nishitani, Matsuoa and Swada [150]. These authors propose the fixed angle scaling law

_ 1 1 1 do C -2n —2n
M= —_ -— = 1— T 1+ U R DS
ST 3 = gy (7D TA*) (D.5)

which differs from (D.1) by a factor of p;“ = (tu/s)~? in the cross section. Here Nior is the total
number of fields in A, B, C, D; thus the predictions fall two powers of s faster than those based on
dimensional counting, and due to mass corrections, present data must be assumed to be subasymp-
totic. The proposed effective trajectory agee(—#) > —3 power-law dependence s~'2 for pp scatter-
ing, and phenomenological treatment of the diffractive amplitude are essentially the same as the
CIM using the quark plus core model. The predictions differ for other channels, however. Again,
we note the absence of crossing symmetry in the proposed rule.

Because of the freedom of mass terms, and the freedom of choice of the trajectories at lower ¢,
a successful phenomenology of two body reactions can be based on the CIM predictions or either
(D.1) or (D.5). The most decisive test will be an accurate experimental determination of the
asymptotic power dependence of pp - pp. It should be emphasized that data for a large but fixed
cm angular range can be used for this purpose.

Kinoshita et al. have also proposed a set of counting rules for inclusive large p; reactions based
upon u baryon rearrangement diagrams. As in the CIM, the results displaying a continuity of
physics throughout the Peyrou plot, giving connections between large p; phenomena and the
triple and central Regge region of exclusive processes. However, the proposed counting rules do
not recognize the importance of the subprocesses in determining the p2 fall-off, and the predicted
powers at fixed t/s, M ?/s seem unreasonable (e.g. py* for yB > MX, p;* for MB » MX, whereas
p7® for BB - BX, BB » MX).
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